随着电网中柔性交流输电系统(flexible AC transmission systems,FACTS)装置的增多,多FACTS同时运行时的交互影响研究成为热点之一。研究了多静止无功补偿器(static var compensator,SVC)阻尼控制中的交互影响现象及其作用机理。首先,...随着电网中柔性交流输电系统(flexible AC transmission systems,FACTS)装置的增多,多FACTS同时运行时的交互影响研究成为热点之一。研究了多静止无功补偿器(static var compensator,SVC)阻尼控制中的交互影响现象及其作用机理。首先,基于时域仿真法提出了多台SVC装置控制器间存在的一类交互影响实例,进而基于多SVC机理分析的线性化模型和经典控制理论揭示了多SVC装置阻尼控制器间的交互作用机理,并提出了多SVC装置阻尼控制器的稳定分析判据,为多FACTS协调控制研究提供了重要参考。最后,使用两区四机系统算例和某实际电网进行了仿真分析,验证了研究结果的正确性。展开更多
In this paper, we obtained a kind of lump solutions of the Kadomtsev-Petviashvili-Benjamin-Bona-Mahony (KP-BBM) equation with the assistance of Mathematica. Some contour plots with different determinant values are seq...In this paper, we obtained a kind of lump solutions of the Kadomtsev-Petviashvili-Benjamin-Bona-Mahony (KP-BBM) equation with the assistance of Mathematica. Some contour plots with different determinant values are sequentially made to show that the corresponding lump solutions tend to zero when x2+y2→∞. Particularly, lump solutions with specific values of the include parameters are plotted, as illustrative examples. Finally, a combination of stripe soliton and lump soliton is discussed to the KP-BBM equation, in which such a solution presents two different interesting phenomena: lump-kink and lump-soliton. Simultaneously, breather rational soliton solutions are displayed.展开更多
文摘随着电网中柔性交流输电系统(flexible AC transmission systems,FACTS)装置的增多,多FACTS同时运行时的交互影响研究成为热点之一。研究了多静止无功补偿器(static var compensator,SVC)阻尼控制中的交互影响现象及其作用机理。首先,基于时域仿真法提出了多台SVC装置控制器间存在的一类交互影响实例,进而基于多SVC机理分析的线性化模型和经典控制理论揭示了多SVC装置阻尼控制器间的交互作用机理,并提出了多SVC装置阻尼控制器的稳定分析判据,为多FACTS协调控制研究提供了重要参考。最后,使用两区四机系统算例和某实际电网进行了仿真分析,验证了研究结果的正确性。
文摘In this paper, we obtained a kind of lump solutions of the Kadomtsev-Petviashvili-Benjamin-Bona-Mahony (KP-BBM) equation with the assistance of Mathematica. Some contour plots with different determinant values are sequentially made to show that the corresponding lump solutions tend to zero when x2+y2→∞. Particularly, lump solutions with specific values of the include parameters are plotted, as illustrative examples. Finally, a combination of stripe soliton and lump soliton is discussed to the KP-BBM equation, in which such a solution presents two different interesting phenomena: lump-kink and lump-soliton. Simultaneously, breather rational soliton solutions are displayed.