Pulse repetition interval(PRI)modulation recognition and pulse sequence search are significant for effective electronic support measures.In modern electromagnetic environments,different types of inter-pulse slide rada...Pulse repetition interval(PRI)modulation recognition and pulse sequence search are significant for effective electronic support measures.In modern electromagnetic environments,different types of inter-pulse slide radars are highly confusing.There are few available training samples in practical situations,which leads to a low recognition accuracy and poor search effect of the pulse sequence.In this paper,an approach based on bi-directional long short-term memory(BiLSTM)networks and the temporal correlation algorithm for PRI modulation recognition and sequence search under the small sample prerequisite is proposed.The simulation results demonstrate that the proposed algorithm can recognize unilinear,bilinear,sawtooth,and sinusoidal PRI modulation types with 91.43% accuracy and complete the pulse sequence search with 30% missing pulses and 50% spurious pulses under the small sample prerequisite.展开更多
目的小儿脑瘫患者的运动障碍分级和康复评估具有重要的临床价值。本文利用表面肌电信号对痉挛型脑瘫患儿的运动神经元发放特性进行研究,旨在为脑瘫患儿的运动障碍评估提供一种量化指标。方法采用平滑非线性能量算子(smoothed nonlinear ...目的小儿脑瘫患者的运动障碍分级和康复评估具有重要的临床价值。本文利用表面肌电信号对痉挛型脑瘫患儿的运动神经元发放特性进行研究,旨在为脑瘫患儿的运动障碍评估提供一种量化指标。方法采用平滑非线性能量算子(smoothed nonlinear energy operator,SNEO)算法,对痉挛型脑瘫患儿表面肌电信号中的运动单位动作电位(motor unit action potential,MUAP)数目进行估计,获得MUAP的平均发放间隔(inter-pulse interval,IPI),并根据医生采用的分级结果和健康人MUAP平均发放时限的早期研究结果进行对比验证。结果对14名不同运动障碍级别脑瘫患者的实验结果显示,其肌电信号MUAP的IPI与他们活动度的级别即运动障碍的程度呈正相关的关系,且具有明显差异。结论研究结果表明本文方法有效,采用IPI参数能够反映脑瘫患儿的运动障碍程度。展开更多
基金supported by the National Natural Science Foundation of China(61801143,61971155)the National Natural Science Foundation of Heilongjiang Province(LH2020F019).
文摘Pulse repetition interval(PRI)modulation recognition and pulse sequence search are significant for effective electronic support measures.In modern electromagnetic environments,different types of inter-pulse slide radars are highly confusing.There are few available training samples in practical situations,which leads to a low recognition accuracy and poor search effect of the pulse sequence.In this paper,an approach based on bi-directional long short-term memory(BiLSTM)networks and the temporal correlation algorithm for PRI modulation recognition and sequence search under the small sample prerequisite is proposed.The simulation results demonstrate that the proposed algorithm can recognize unilinear,bilinear,sawtooth,and sinusoidal PRI modulation types with 91.43% accuracy and complete the pulse sequence search with 30% missing pulses and 50% spurious pulses under the small sample prerequisite.
文摘目的小儿脑瘫患者的运动障碍分级和康复评估具有重要的临床价值。本文利用表面肌电信号对痉挛型脑瘫患儿的运动神经元发放特性进行研究,旨在为脑瘫患儿的运动障碍评估提供一种量化指标。方法采用平滑非线性能量算子(smoothed nonlinear energy operator,SNEO)算法,对痉挛型脑瘫患儿表面肌电信号中的运动单位动作电位(motor unit action potential,MUAP)数目进行估计,获得MUAP的平均发放间隔(inter-pulse interval,IPI),并根据医生采用的分级结果和健康人MUAP平均发放时限的早期研究结果进行对比验证。结果对14名不同运动障碍级别脑瘫患者的实验结果显示,其肌电信号MUAP的IPI与他们活动度的级别即运动障碍的程度呈正相关的关系,且具有明显差异。结论研究结果表明本文方法有效,采用IPI参数能够反映脑瘫患儿的运动障碍程度。