期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于Group-Res2Block的智能合成语音说话人确认方法
1
作者 李菲 苏兆品 +2 位作者 王年松 杨波 张国富 《应用科学学报》 CAS CSCD 北大核心 2024年第4期709-722,共14页
针对现有说话人确认任务基于自然语音条件下并不适用于智能合成语音的问题,提出一种基于Group-Res2Block的智能合成语音说话人确认方法。首先,设计了Group-Res2Block结构,在Res2Block的基础上将当前分组与相邻前后分组进行合并形成新的... 针对现有说话人确认任务基于自然语音条件下并不适用于智能合成语音的问题,提出一种基于Group-Res2Block的智能合成语音说话人确认方法。首先,设计了Group-Res2Block结构,在Res2Block的基础上将当前分组与相邻前后分组进行合并形成新的分组,以增强说话人局部特征的上下文联系;其次,设计了并行结构的多尺度通道注意力特征融合机制,利用不同大小卷积核实现同一层级的特征在通道维度的特征选择,以获取更具表现力的说话人特征,避免信息冗余;最后,设计了串行结构的多尺度层注意力特征融合机制,构建层结构,将深浅层特征整体进行融合并赋予不同权重,以获取最优的特征表达。为验证所提出特征提取网络的有效性,构建了中英文两种智能合成语音数据集进行消融实验和对比实验。结果表明本文方法在该任务的评价指标精确度(accuracy,ACC)、等错误率(equal error rate,EER)和最小检测代价函数(minimum detection cost function,minDCF)上是最优的。此外,通过对模型泛化性能进行测试,验证了本文方法对未知智能语音算法的适用性。 展开更多
关键词 说话人确认 智能合成语音 Group-Res2Block深度神经网络 多尺度特征 注意力机制
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部