Multi-fountional hollow structures have emerged as promising platforms for intelligent drug delivery due to their unique properties,such as high loading capacities and programmed drug release.In particular,hollow mult...Multi-fountional hollow structures have emerged as promising platforms for intelligent drug delivery due to their unique properties,such as high loading capacities and programmed drug release.In particular,hollow multishell structures(HoMSs)with multilevel shell and space can regulate the molecular-level interaction between drugs and materials,so as to achieve the temporal-spatial order and sequential release of drugs.The anisotropic hollow structures can control the drug diffusion process by inducing the macroscopic interface flow through autonomous movement,realizing the targeted drug transport and release.In this paper,a key focus will be HoMSs with their temporal-ordered architectures and anisotropic hollow carriers with directional movement.Their synthesis mechanisms,structure-property relationships,smartly programmed drug delivery and biomedical applications will be discussed,providing insights into designing next-generation intelligent drug carriers.展开更多
The research purpose was to improve the accuracy in identifying the prosthetic leg locomotion mode.Surface electromyography(sEMG)combined with high-order zero-crossing was used to identify the prosthetic leg locomotio...The research purpose was to improve the accuracy in identifying the prosthetic leg locomotion mode.Surface electromyography(sEMG)combined with high-order zero-crossing was used to identify the prosthetic leg locomotion modes.sEMG signals recorded from residual thigh muscles were chosen as inputs to pattern classifier for locomotion-mode identification.High-order zero-crossing were computed as the sEMG features regarding locomotion modes.Relevance vector machine(RVM)classifier was investigated.Bat algorithm(BA)was used to compute the RVM classifier kernel function parameters.The classification performance of the particle swarm optimization-relevance vector machine(PSO-RVM)and RVM classifiers was compared.The BA-RVM produced lower classification error in sEMG pattern recognition for the transtibial amputees over a variety of locomotion modes:upslope,downgrade,level-ground walking and stair ascent/descent.展开更多
Estimating the cycle time of each job over event streams in intelligent manufacturing is critical. These streams include many long-lasting events which have certain durations. The temporal relationships among those in...Estimating the cycle time of each job over event streams in intelligent manufacturing is critical. These streams include many long-lasting events which have certain durations. The temporal relationships among those interval-based events are often complex. Meanwhile, network latencies and machine failures in intelligent manufacturing may cause events to be out-of-order. This topic has rarely been discussed because most existing methods do not consider both interval-based and out-of-order events. In this work, we analyze the preliminaries of event temporal semantics. A tree-plan model of interval-based out-of-order events is proposed. A hybrid solution is correspondingly introduced. Extensive experimental studies demonstrate the efficiency of our approach.展开更多
This paper introduces an autonomous robot (AR) cart to execute the last mile delivery task. We use navigation and intelligent avoidance algorithms to plan the path of the automatic robot. When AR encounters a new unre...This paper introduces an autonomous robot (AR) cart to execute the last mile delivery task. We use navigation and intelligent avoidance algorithms to plan the path of the automatic robot. When AR encounters a new unrecognizable terrain, it will give control to the customer who can control the AR on its mobile app and navigate to the specified destination. We have initially designed an autonomous delivery robot with the cost of 2774 dollars.展开更多
This research investigates the digital-to-analog converter(DAC)free architecture for the digital reconfigurable intelligent surface(RIS)system,where the transmission lines are implemented for reflection coefficient(RC...This research investigates the digital-to-analog converter(DAC)free architecture for the digital reconfigurable intelligent surface(RIS)system,where the transmission lines are implemented for reflection coefficient(RC)control to reduce power consumption.In the proposed architecture,the radio frequency(RF)switch based phase shifter is considered.By using a single-pole four-throw(SP4T)switch to simultaneously control the RCs of a group of elements,a 2-bit phase shifter is realized for passive beam steering.A novel modulation scheme is developed to explore the cost effectiveness,which approaches the performance of traditional quadrature amplitude modulation(QAM).Specifically,to overcome the limitation of the phase shift bits,joint frequency-shift and phase-rotation operations are applied to the constellation points.The simulation and experimental results demonstrate that the proposed architecture is capable of providing an ideal transmission performance.Moreover,64-and 256-QAM modulation schemes could be implemented by expanding the elements and phase bits.展开更多
基金This work was supported by the National Natural Science Foundation of China(Nos.92163209,21821005 and 51932001)the Beijing Natural Science Foundation,China(No.JQ22004).
文摘Multi-fountional hollow structures have emerged as promising platforms for intelligent drug delivery due to their unique properties,such as high loading capacities and programmed drug release.In particular,hollow multishell structures(HoMSs)with multilevel shell and space can regulate the molecular-level interaction between drugs and materials,so as to achieve the temporal-spatial order and sequential release of drugs.The anisotropic hollow structures can control the drug diffusion process by inducing the macroscopic interface flow through autonomous movement,realizing the targeted drug transport and release.In this paper,a key focus will be HoMSs with their temporal-ordered architectures and anisotropic hollow carriers with directional movement.Their synthesis mechanisms,structure-property relationships,smartly programmed drug delivery and biomedical applications will be discussed,providing insights into designing next-generation intelligent drug carriers.
基金the Center Plain Science and Technology Innovation Talents(No.194200510016)the Science and Technology Innovation Team Project of Henan Province University(No.19IRTSTHN013)the Key Scien-tific Research Support Project for Institutions of Higher Learning in Henan Province(No.18A413014)。
文摘The research purpose was to improve the accuracy in identifying the prosthetic leg locomotion mode.Surface electromyography(sEMG)combined with high-order zero-crossing was used to identify the prosthetic leg locomotion modes.sEMG signals recorded from residual thigh muscles were chosen as inputs to pattern classifier for locomotion-mode identification.High-order zero-crossing were computed as the sEMG features regarding locomotion modes.Relevance vector machine(RVM)classifier was investigated.Bat algorithm(BA)was used to compute the RVM classifier kernel function parameters.The classification performance of the particle swarm optimization-relevance vector machine(PSO-RVM)and RVM classifiers was compared.The BA-RVM produced lower classification error in sEMG pattern recognition for the transtibial amputees over a variety of locomotion modes:upslope,downgrade,level-ground walking and stair ascent/descent.
文摘Estimating the cycle time of each job over event streams in intelligent manufacturing is critical. These streams include many long-lasting events which have certain durations. The temporal relationships among those interval-based events are often complex. Meanwhile, network latencies and machine failures in intelligent manufacturing may cause events to be out-of-order. This topic has rarely been discussed because most existing methods do not consider both interval-based and out-of-order events. In this work, we analyze the preliminaries of event temporal semantics. A tree-plan model of interval-based out-of-order events is proposed. A hybrid solution is correspondingly introduced. Extensive experimental studies demonstrate the efficiency of our approach.
文摘This paper introduces an autonomous robot (AR) cart to execute the last mile delivery task. We use navigation and intelligent avoidance algorithms to plan the path of the automatic robot. When AR encounters a new unrecognizable terrain, it will give control to the customer who can control the AR on its mobile app and navigate to the specified destination. We have initially designed an autonomous delivery robot with the cost of 2774 dollars.
基金Project supported by the National Key R&D Program of China(No.2019YFB1803400)。
文摘This research investigates the digital-to-analog converter(DAC)free architecture for the digital reconfigurable intelligent surface(RIS)system,where the transmission lines are implemented for reflection coefficient(RC)control to reduce power consumption.In the proposed architecture,the radio frequency(RF)switch based phase shifter is considered.By using a single-pole four-throw(SP4T)switch to simultaneously control the RCs of a group of elements,a 2-bit phase shifter is realized for passive beam steering.A novel modulation scheme is developed to explore the cost effectiveness,which approaches the performance of traditional quadrature amplitude modulation(QAM).Specifically,to overcome the limitation of the phase shift bits,joint frequency-shift and phase-rotation operations are applied to the constellation points.The simulation and experimental results demonstrate that the proposed architecture is capable of providing an ideal transmission performance.Moreover,64-and 256-QAM modulation schemes could be implemented by expanding the elements and phase bits.