将车路协同系统中车辆的位置估计问题转化为时空图模型构建与优化问题,提出一种时空图优化协同定位(STGO-CL)方法。其中,感知区域中不同时刻的车辆位置构成图模型中的节点;车端与路端通过融合高精地图计算出来的车辆绝对位置与相对位置...将车路协同系统中车辆的位置估计问题转化为时空图模型构建与优化问题,提出一种时空图优化协同定位(STGO-CL)方法。其中,感知区域中不同时刻的车辆位置构成图模型中的节点;车端与路端通过融合高精地图计算出来的车辆绝对位置与相对位置构成图模型的边,并加入时延补偿约束。在求解过程中采用Levenberg-Marquardt (LM)法求解目标函数实现对感知区域中的车辆位置最优状态估计,实现车-路-图协同定位。利用CARLA建立直道和弯道仿真实验场景以验证算法,结果表明:时空图优化协同定位方法平均定位误差为0.29 m,定位性能较GPS或路侧单元(Road side unit, RSU)单独定位分别提高了97.1%和55.4%,较不融合高精地图的时空图优化协同定位方法提高了42.0%。在时延补偿上,可将200 ms时延下的定位性能提高67.0%。本文利用时空图模型实现车-路-图协同定位可有效提升车路协同系统的环境感知性能。展开更多
针对智能网联环境下传感器感知和车车通信(vehicle to vehicle,V2V)都存在时延的问题,提出一种考虑双时延和多前车反馈(dual delay multiple look-ahead full velocity difference,DD-MLFVD)的智能网联汽车跟驰模型.根据智能网联汽车感...针对智能网联环境下传感器感知和车车通信(vehicle to vehicle,V2V)都存在时延的问题,提出一种考虑双时延和多前车反馈(dual delay multiple look-ahead full velocity difference,DD-MLFVD)的智能网联汽车跟驰模型.根据智能网联汽车感知特性引入双时延信息,结合多前车速度差和期望速度信息提出DD-MLFVD模型.通过微小扰动法求解DD-MLFVD模型的临界稳定性条件,同时结合模型参数研究前车数量和时延大小对模型稳定域的影响.利用直道场景对模型进行仿真分析,着重研究变扰动和变时延场景下DD-MLFVD对交通流的稳定效果.结果表明:面对复杂扰动影响,DD-MLFVD模型能够较好吸收扰动,可提升交通流的稳定性.展开更多
文摘将车路协同系统中车辆的位置估计问题转化为时空图模型构建与优化问题,提出一种时空图优化协同定位(STGO-CL)方法。其中,感知区域中不同时刻的车辆位置构成图模型中的节点;车端与路端通过融合高精地图计算出来的车辆绝对位置与相对位置构成图模型的边,并加入时延补偿约束。在求解过程中采用Levenberg-Marquardt (LM)法求解目标函数实现对感知区域中的车辆位置最优状态估计,实现车-路-图协同定位。利用CARLA建立直道和弯道仿真实验场景以验证算法,结果表明:时空图优化协同定位方法平均定位误差为0.29 m,定位性能较GPS或路侧单元(Road side unit, RSU)单独定位分别提高了97.1%和55.4%,较不融合高精地图的时空图优化协同定位方法提高了42.0%。在时延补偿上,可将200 ms时延下的定位性能提高67.0%。本文利用时空图模型实现车-路-图协同定位可有效提升车路协同系统的环境感知性能。
文摘针对智能网联环境下传感器感知和车车通信(vehicle to vehicle,V2V)都存在时延的问题,提出一种考虑双时延和多前车反馈(dual delay multiple look-ahead full velocity difference,DD-MLFVD)的智能网联汽车跟驰模型.根据智能网联汽车感知特性引入双时延信息,结合多前车速度差和期望速度信息提出DD-MLFVD模型.通过微小扰动法求解DD-MLFVD模型的临界稳定性条件,同时结合模型参数研究前车数量和时延大小对模型稳定域的影响.利用直道场景对模型进行仿真分析,着重研究变扰动和变时延场景下DD-MLFVD对交通流的稳定效果.结果表明:面对复杂扰动影响,DD-MLFVD模型能够较好吸收扰动,可提升交通流的稳定性.