期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于深度学习的露天铀矿可爆性智能分级模型研究
1
作者
刘玉龙
扶海鹰
+5 位作者
黄磊
凌阳
连檬
李峰
谢烽
丁德馨
《爆破》
CSCD
北大核心
2024年第3期240-247,共8页
湖山铀矿属于特大型露天铀矿山,目前矿山爆破生产为“一次设计,长期使用”,故存在爆破参数缺乏动态调整、炸药单耗高、爆破效果不理想的问题,对此,可通过对爆破区块进行动态可爆性分级管理并反馈调控爆破设计来解决。本研究利用该矿爆...
湖山铀矿属于特大型露天铀矿山,目前矿山爆破生产为“一次设计,长期使用”,故存在爆破参数缺乏动态调整、炸药单耗高、爆破效果不理想的问题,对此,可通过对爆破区块进行动态可爆性分级管理并反馈调控爆破设计来解决。本研究利用该矿爆破区块的生产历史大数据,提出了采用钻孔率(α)、炸药单耗(β)和块度指标(γ)计算区块爆破性指数K的方法,并根据爆破性指数K的值对历史爆破区块的可爆性进行分级;再以爆破区块的单轴抗压强度(UCS)、矿石的质量指标(RQD)和矿体的地质强度指标(GSI)作为可爆性指标,建立了可爆性指标与可爆性等级相对应的数据集;然后构建了深度学习神经网络模型,并以可爆性指标作为输入,以可爆性等级作为输出对构建的深度学习神经网络模型进行了训练;最后通过现场试验验证了训练后的模型对可爆性等级预测的可靠性和准确性,同时优化了爆破设计和爆破效果。研究结果表明:建立的深度学习神经网络模型可用于爆破区块的可爆性分级与爆破效果优化。
展开更多
关键词
湖山铀矿
可爆性智能分级
深度学习
神经网络
区块爆破
下载PDF
职称材料
题名
基于深度学习的露天铀矿可爆性智能分级模型研究
1
作者
刘玉龙
扶海鹰
黄磊
凌阳
连檬
李峰
谢烽
丁德馨
机构
中广核铀业发展有限公司
南华大学铀矿冶生物技术国防重点学科实验室
北方爆破科技有限公司
出处
《爆破》
CSCD
北大核心
2024年第3期240-247,共8页
文摘
湖山铀矿属于特大型露天铀矿山,目前矿山爆破生产为“一次设计,长期使用”,故存在爆破参数缺乏动态调整、炸药单耗高、爆破效果不理想的问题,对此,可通过对爆破区块进行动态可爆性分级管理并反馈调控爆破设计来解决。本研究利用该矿爆破区块的生产历史大数据,提出了采用钻孔率(α)、炸药单耗(β)和块度指标(γ)计算区块爆破性指数K的方法,并根据爆破性指数K的值对历史爆破区块的可爆性进行分级;再以爆破区块的单轴抗压强度(UCS)、矿石的质量指标(RQD)和矿体的地质强度指标(GSI)作为可爆性指标,建立了可爆性指标与可爆性等级相对应的数据集;然后构建了深度学习神经网络模型,并以可爆性指标作为输入,以可爆性等级作为输出对构建的深度学习神经网络模型进行了训练;最后通过现场试验验证了训练后的模型对可爆性等级预测的可靠性和准确性,同时优化了爆破设计和爆破效果。研究结果表明:建立的深度学习神经网络模型可用于爆破区块的可爆性分级与爆破效果优化。
关键词
湖山铀矿
可爆性智能分级
深度学习
神经网络
区块爆破
Keywords
Husab
uranium
mine
intelligent
classification
of
blastability
deep
learning
neural
network
block
blasting
分类号
TD235 [矿业工程—矿井建设]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于深度学习的露天铀矿可爆性智能分级模型研究
刘玉龙
扶海鹰
黄磊
凌阳
连檬
李峰
谢烽
丁德馨
《爆破》
CSCD
北大核心
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部