Sight obstructions along road curves can lead to a crash if the driver is not able to stop the vehicle in time.This is a particular issue along curves with limited available sight,where speed management is necessary t...Sight obstructions along road curves can lead to a crash if the driver is not able to stop the vehicle in time.This is a particular issue along curves with limited available sight,where speed management is necessary to avoid unsafe situations(e.g.,driving off the road or invading the other traffic lane).To solve this issue,we proposed a novel intelligent speed adaptation(ISA)system for visibility,called V-ISA(intelligent speed adaptation for visibility).It estimates the real-time safe speed limits based on the prevailing sight conditions.V-ISA comes with three variants with specific feedback modalities(1)visual and(2)auditory information,and(3)direct intervention to assume control over the vehicle speed.Here,we investigated the efficiency of each of the three V-ISA variants on driving speed choice and lateral behavioural response along road curves with limited and unsafe available sight distances,using a driving simulator.We also considered curve road geometry(curve direction:rightward vs.leftward).Sixty active drivers were recruited for the study.While half of them(experimental group)tested the three V-ISA variants(and a V-ISA off condition),the other half always drove with the V-ISA off(validation group).We used a linear mixed-effect model to evaluate the influence of V-ISA on driver behaviour.All V-ISA variants were efficient at reducing speeds at entrance points,with no discernible negative impact on driver lateral behaviour.On rightward curves,the V-ISA intervening variant appeared to be the most effective at adapting to sight limitations.Results of the current study implies that V-ISA might assist drivers to adjust their operating speed as per prevailing sight conditions and,consequently,establishes safer driving conditions.展开更多
Alzheimer’s disease affects millions of persons every year. Negative emotions such as stress and frustration have a negative impact on memory function and Alzheimer's patients experience more negative emotions th...Alzheimer’s disease affects millions of persons every year. Negative emotions such as stress and frustration have a negative impact on memory function and Alzheimer's patients experience more negative emotions than healthy adults. Non-pharmacological treatment such as immersion in virtual environments could help Alzheimer patients by reducing their negative emotions, but it has restrictions and requirements. In this work, we present three virtual reality relaxing systems in which the patients are immersed in relaxing environments. We propose to use intelligent agents in order to adapt the relaxing environment to each participant and optimize its relaxation effect. The intelligent agents track the emotions of patients using electroencephalography as input in order to adapt</span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">the environments. We designed each system with different levels of intelligence in order to analyze the impact of the adaptation on the patients. Experiments were performed for each system on participants with subjective cognitive decline. Results show that these relaxing systems can reduce negative emotions and improve participants’ memory performance. The positive effects on affective state and memory persisted for a longer period of time and were generally more effective for the systems with more intelligence. We believe that the combination of </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">a </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">relaxing environment, virtual reality, intelligent agents for adapting</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">the environment展开更多
文摘Sight obstructions along road curves can lead to a crash if the driver is not able to stop the vehicle in time.This is a particular issue along curves with limited available sight,where speed management is necessary to avoid unsafe situations(e.g.,driving off the road or invading the other traffic lane).To solve this issue,we proposed a novel intelligent speed adaptation(ISA)system for visibility,called V-ISA(intelligent speed adaptation for visibility).It estimates the real-time safe speed limits based on the prevailing sight conditions.V-ISA comes with three variants with specific feedback modalities(1)visual and(2)auditory information,and(3)direct intervention to assume control over the vehicle speed.Here,we investigated the efficiency of each of the three V-ISA variants on driving speed choice and lateral behavioural response along road curves with limited and unsafe available sight distances,using a driving simulator.We also considered curve road geometry(curve direction:rightward vs.leftward).Sixty active drivers were recruited for the study.While half of them(experimental group)tested the three V-ISA variants(and a V-ISA off condition),the other half always drove with the V-ISA off(validation group).We used a linear mixed-effect model to evaluate the influence of V-ISA on driver behaviour.All V-ISA variants were efficient at reducing speeds at entrance points,with no discernible negative impact on driver lateral behaviour.On rightward curves,the V-ISA intervening variant appeared to be the most effective at adapting to sight limitations.Results of the current study implies that V-ISA might assist drivers to adjust their operating speed as per prevailing sight conditions and,consequently,establishes safer driving conditions.
文摘Alzheimer’s disease affects millions of persons every year. Negative emotions such as stress and frustration have a negative impact on memory function and Alzheimer's patients experience more negative emotions than healthy adults. Non-pharmacological treatment such as immersion in virtual environments could help Alzheimer patients by reducing their negative emotions, but it has restrictions and requirements. In this work, we present three virtual reality relaxing systems in which the patients are immersed in relaxing environments. We propose to use intelligent agents in order to adapt the relaxing environment to each participant and optimize its relaxation effect. The intelligent agents track the emotions of patients using electroencephalography as input in order to adapt</span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">the environments. We designed each system with different levels of intelligence in order to analyze the impact of the adaptation on the patients. Experiments were performed for each system on participants with subjective cognitive decline. Results show that these relaxing systems can reduce negative emotions and improve participants’ memory performance. The positive effects on affective state and memory persisted for a longer period of time and were generally more effective for the systems with more intelligence. We believe that the combination of </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">a </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">relaxing environment, virtual reality, intelligent agents for adapting</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">the environment