Bailongjiang watershed in southern Gansu province, China, is one of the most landslide-prone regions in China, characterized by very high frequency of landslide occurrence. In order to predict the landslide occurrence...Bailongjiang watershed in southern Gansu province, China, is one of the most landslide-prone regions in China, characterized by very high frequency of landslide occurrence. In order to predict the landslide occurrence, a comprehensive map of landslide susceptibility is required which may be significantly helpful in reducing loss of property and human life. In this study, an integrated model of information value method and logistic regression is proposed by using their merits at maximum and overcoming their weaknesses, which may enhance precision and accuracy of landslide susceptibility assessment. A detailed and reliable landslide inventory with 1587 landslides was prepared and randomly divided into two groups,(i) training dataset and(ii) testing dataset. Eight distinct landslide conditioning factors including lithology, slope gradient, aspect, elevation, distance to drainages,distance to faults, distance to roads and vegetation coverage were selected for landslide susceptibility mapping. The produced landslide susceptibility maps were validated by the success rate and prediction rate curves. The validation results show that the success rate and the prediction rate of the integrated model are 81.7 % and 84.6 %, respectively, which indicate that the proposed integrated method is reliable to produce an accurate landslide susceptibility map and the results may be used for landslides management and mitigation.展开更多
Aiming at the problem that the traditional Unscented Kalman Filtering(UKF) algorithm can't solve the problem that the measurement covariance matrix is unknown and the measured value contains outliers,this paper pr...Aiming at the problem that the traditional Unscented Kalman Filtering(UKF) algorithm can't solve the problem that the measurement covariance matrix is unknown and the measured value contains outliers,this paper proposes a robust adaptive UKF algorithm based on Support Vector Regression(SVR).The algorithm combines the advantages of support vector regression with small samples,nonlinear learning ability and online estimation capability of adaptive algorithm based on innovation.Firstly,the SVR model is trained by using the innovation in the sliding window,and the new innovation is monitored.If the deviation between the estimated innovation and the measured innovation exceeds a given threshold,then measured innovation will be replaced by the predicted innovation,and then the processed innovation is used to calculate the measurement noise covariance matrix using the adaptive estimation algorithm.Simulation experiments and measured data experiments show that SVRUKF is significantly better than the traditional UKF,robust UKF and adaptive UKF algorithms for the case where the covariance matrix is unknown and the measured values have outliers.展开更多
The identification of dominant driving factors for different ecosystem services(ESs)is crucial for ecological conservation and sustainable development.However,the spatial heterogeneity of the dominant driving factors ...The identification of dominant driving factors for different ecosystem services(ESs)is crucial for ecological conservation and sustainable development.However,the spatial heterogeneity of the dominant driving factors affecting various ESs has not been adequately elucidated,particularly in ecologically fragile regions.This study employed the integrated valuation of ESs and trade-offs(InVEST)model to evaluate four ESs,namely,water yield(WY),soil conservation(SC),habitat quality(HQ),and carbon storage(CS),and then to identify the dominant driving factors of spatiotemporal differentiation of ES and further to characterize the spatial heterogeneity characteristics of the dominant driving factors in the eco-fragile areas of the upper Yellow River,China from 2000 to 2020.The results demonstrated that WY exhibited northeast-high and northwest-low patterns in the upper Yellow River region,while high values of SC and CS were distributed in central forested areas and a high value of HQ was distributed in vast grassland areas.The CS,WY,and SC exhibited decreasing trends over time.The most critical factors affecting WY,SC,HQ,and CS were the actual evapotranspiration,precipitation,slope,and normalized difference vegetation index,respectively.In addition,the effects of different factors on various ESs exhibited spatial heterogeneity.These results could provide spatial decision support for eco-protection and rehabilitation in ecologically fragile areas.展开更多
High-precision filtering estimation is one of the key techniques for strapdown inertial navigation system/global navigation satellite system(SINS/GNSS)integrated navigation system,and its estimation plays an important...High-precision filtering estimation is one of the key techniques for strapdown inertial navigation system/global navigation satellite system(SINS/GNSS)integrated navigation system,and its estimation plays an important role in the performance evaluation of the navigation system.Traditional filter estimation methods usually assume that the measurement noise conforms to the Gaussian distribution,without considering the influence of the pollution introduced by the GNSS signal,which is susceptible to external interference.To address this problem,a high-precision filter estimation method using Gaussian process regression(GPR)is proposed to enhance the prediction and estimation capability of the unscented quaternion estimator(USQUE)to improve the navigation accuracy.Based on the advantage of the GPR machine learning function,the estimation performance of the sliding window for model training is measured.This method estimates the output of the observation information source through the measurement window and realizes the robust measurement update of the filter.The combination of GPR and the USQUE algorithm establishes a robust mechanism framework,which enhances the robustness and stability of traditional methods.The results of the trajectory simulation experiment and SINS/GNSS car-mounted tests indicate that the strategy has strong robustness and high estimation accuracy,which demonstrates the effectiveness of the proposed method.展开更多
This paper proposed and evaluated an estimation method for indoor positioning.The method combines location fingerprinting and dead reckoning differently from the conventional combinations.It uses compound location fin...This paper proposed and evaluated an estimation method for indoor positioning.The method combines location fingerprinting and dead reckoning differently from the conventional combinations.It uses compound location fingerprints,which are composed of radio fingerprints at multiple points of time,that is,at multiple positions,and displacements between them estimated by dead reckoning.To avoid errors accumulated from dead reckoning,the method uses short-range dead reckoning.The method was evaluated using 16 Bluetooth beacons installed in a student room with the dimensions of 11×5 m with furniture inside.The Received Signal Strength Indicator(RSSI)values of the beacons were collected at 30 measuring points,which were points at the intersections on a 1×1 m grid with no obstacles.A compound location fingerprint is composed of RSSI vectors at two points and a displacement vector between them.Random Forests(RF)was used to build regression models to estimate positions from location fingerprints.The root mean square error of position estimation was 0.87 m using 16 Bluetooth beacons.This error is lower than that received with a single-point baseline model,where a feature vector is composed of only RSSI values at one location.The results suggest that the proposed method is effective for indoor positioning.展开更多
基金supported by the Project of the 12th Five-year National Sci-Tech Support Plan of China(2011BAK12B09)China Special Project of Basic Work of Science and Technology(2011FY110100-2)
文摘Bailongjiang watershed in southern Gansu province, China, is one of the most landslide-prone regions in China, characterized by very high frequency of landslide occurrence. In order to predict the landslide occurrence, a comprehensive map of landslide susceptibility is required which may be significantly helpful in reducing loss of property and human life. In this study, an integrated model of information value method and logistic regression is proposed by using their merits at maximum and overcoming their weaknesses, which may enhance precision and accuracy of landslide susceptibility assessment. A detailed and reliable landslide inventory with 1587 landslides was prepared and randomly divided into two groups,(i) training dataset and(ii) testing dataset. Eight distinct landslide conditioning factors including lithology, slope gradient, aspect, elevation, distance to drainages,distance to faults, distance to roads and vegetation coverage were selected for landslide susceptibility mapping. The produced landslide susceptibility maps were validated by the success rate and prediction rate curves. The validation results show that the success rate and the prediction rate of the integrated model are 81.7 % and 84.6 %, respectively, which indicate that the proposed integrated method is reliable to produce an accurate landslide susceptibility map and the results may be used for landslides management and mitigation.
文摘Aiming at the problem that the traditional Unscented Kalman Filtering(UKF) algorithm can't solve the problem that the measurement covariance matrix is unknown and the measured value contains outliers,this paper proposes a robust adaptive UKF algorithm based on Support Vector Regression(SVR).The algorithm combines the advantages of support vector regression with small samples,nonlinear learning ability and online estimation capability of adaptive algorithm based on innovation.Firstly,the SVR model is trained by using the innovation in the sliding window,and the new innovation is monitored.If the deviation between the estimated innovation and the measured innovation exceeds a given threshold,then measured innovation will be replaced by the predicted innovation,and then the processed innovation is used to calculate the measurement noise covariance matrix using the adaptive estimation algorithm.Simulation experiments and measured data experiments show that SVRUKF is significantly better than the traditional UKF,robust UKF and adaptive UKF algorithms for the case where the covariance matrix is unknown and the measured values have outliers.
基金Under the auspices of National Natural Science Foundation of China (No.41977402,41977194)。
文摘The identification of dominant driving factors for different ecosystem services(ESs)is crucial for ecological conservation and sustainable development.However,the spatial heterogeneity of the dominant driving factors affecting various ESs has not been adequately elucidated,particularly in ecologically fragile regions.This study employed the integrated valuation of ESs and trade-offs(InVEST)model to evaluate four ESs,namely,water yield(WY),soil conservation(SC),habitat quality(HQ),and carbon storage(CS),and then to identify the dominant driving factors of spatiotemporal differentiation of ES and further to characterize the spatial heterogeneity characteristics of the dominant driving factors in the eco-fragile areas of the upper Yellow River,China from 2000 to 2020.The results demonstrated that WY exhibited northeast-high and northwest-low patterns in the upper Yellow River region,while high values of SC and CS were distributed in central forested areas and a high value of HQ was distributed in vast grassland areas.The CS,WY,and SC exhibited decreasing trends over time.The most critical factors affecting WY,SC,HQ,and CS were the actual evapotranspiration,precipitation,slope,and normalized difference vegetation index,respectively.In addition,the effects of different factors on various ESs exhibited spatial heterogeneity.These results could provide spatial decision support for eco-protection and rehabilitation in ecologically fragile areas.
基金supported by the National Natural Science Foundation of China(61873275,61703419,425317829).
文摘High-precision filtering estimation is one of the key techniques for strapdown inertial navigation system/global navigation satellite system(SINS/GNSS)integrated navigation system,and its estimation plays an important role in the performance evaluation of the navigation system.Traditional filter estimation methods usually assume that the measurement noise conforms to the Gaussian distribution,without considering the influence of the pollution introduced by the GNSS signal,which is susceptible to external interference.To address this problem,a high-precision filter estimation method using Gaussian process regression(GPR)is proposed to enhance the prediction and estimation capability of the unscented quaternion estimator(USQUE)to improve the navigation accuracy.Based on the advantage of the GPR machine learning function,the estimation performance of the sliding window for model training is measured.This method estimates the output of the observation information source through the measurement window and realizes the robust measurement update of the filter.The combination of GPR and the USQUE algorithm establishes a robust mechanism framework,which enhances the robustness and stability of traditional methods.The results of the trajectory simulation experiment and SINS/GNSS car-mounted tests indicate that the strategy has strong robustness and high estimation accuracy,which demonstrates the effectiveness of the proposed method.
文摘This paper proposed and evaluated an estimation method for indoor positioning.The method combines location fingerprinting and dead reckoning differently from the conventional combinations.It uses compound location fingerprints,which are composed of radio fingerprints at multiple points of time,that is,at multiple positions,and displacements between them estimated by dead reckoning.To avoid errors accumulated from dead reckoning,the method uses short-range dead reckoning.The method was evaluated using 16 Bluetooth beacons installed in a student room with the dimensions of 11×5 m with furniture inside.The Received Signal Strength Indicator(RSSI)values of the beacons were collected at 30 measuring points,which were points at the intersections on a 1×1 m grid with no obstacles.A compound location fingerprint is composed of RSSI vectors at two points and a displacement vector between them.Random Forests(RF)was used to build regression models to estimate positions from location fingerprints.The root mean square error of position estimation was 0.87 m using 16 Bluetooth beacons.This error is lower than that received with a single-point baseline model,where a feature vector is composed of only RSSI values at one location.The results suggest that the proposed method is effective for indoor positioning.