In this paper, we analyze the seismic signal in the time-frequency domain using the generalized S-transform combined with spectrum modeling. Without assuming that the reflection coefficients are random white noise as ...In this paper, we analyze the seismic signal in the time-frequency domain using the generalized S-transform combined with spectrum modeling. Without assuming that the reflection coefficients are random white noise as in the conventional resolution-enhanced techniques, the wavelet which changes with time and frequency was simulated and eliminated. After using the inverse S-transform for the processed instantaneous spectrum, the signal in the time domain was obtained again with a more balanced spectrum and broader frequency band. The quality of seismic data was improved without additional noise.展开更多
Representing earthquake ground: motion as time varying ARMA model, the instantaneous spectrum can only be determined by the time varying coefficients of the corresponding ARMA model. In this paper, unscented Kalman f...Representing earthquake ground: motion as time varying ARMA model, the instantaneous spectrum can only be determined by the time varying coefficients of the corresponding ARMA model. In this paper, unscented Kalman filter is applied to estimate the time varying coefficients. The comparison between the estimation results of unscented Kalman filter and Kalman filter methods shows that unscented Kalman filter can more precisely represent the distribution of the spectral peaks in time-frequency plane than Kalman filter, and its time and frequency resolution is finer which ensures its better ability to track the local properties of earthquake ground motions and to identify the systems with nonlinearity or abruptness. Moreover, the estimation results of ARMA models with different orders indicate that the theoretical frequency resolving power of ARMA model which was usually ignored in former studies has great effect on the estimation precision of instantaneous spectrum and it should be taken as one of the key factors in order selection of ARMA model.展开更多
基金supported by National 973 Key Basic Research Development Program(No.2007CB209602)National 863 High Technology Research Development Program (No.2007AA067.229)
文摘In this paper, we analyze the seismic signal in the time-frequency domain using the generalized S-transform combined with spectrum modeling. Without assuming that the reflection coefficients are random white noise as in the conventional resolution-enhanced techniques, the wavelet which changes with time and frequency was simulated and eliminated. After using the inverse S-transform for the processed instantaneous spectrum, the signal in the time domain was obtained again with a more balanced spectrum and broader frequency band. The quality of seismic data was improved without additional noise.
基金Project supported by the National Natural Science Foundation of China (No.50008017)
文摘Representing earthquake ground: motion as time varying ARMA model, the instantaneous spectrum can only be determined by the time varying coefficients of the corresponding ARMA model. In this paper, unscented Kalman filter is applied to estimate the time varying coefficients. The comparison between the estimation results of unscented Kalman filter and Kalman filter methods shows that unscented Kalman filter can more precisely represent the distribution of the spectral peaks in time-frequency plane than Kalman filter, and its time and frequency resolution is finer which ensures its better ability to track the local properties of earthquake ground motions and to identify the systems with nonlinearity or abruptness. Moreover, the estimation results of ARMA models with different orders indicate that the theoretical frequency resolving power of ARMA model which was usually ignored in former studies has great effect on the estimation precision of instantaneous spectrum and it should be taken as one of the key factors in order selection of ARMA model.