It is a comparatively convenient technique to investigate the motion of a particle with the help of the differential geometry the-ory,rather than directly decomposing the motion in the Cartesian coordinates.The new mo...It is a comparatively convenient technique to investigate the motion of a particle with the help of the differential geometry the-ory,rather than directly decomposing the motion in the Cartesian coordinates.The new model of three-dimensional (3D) guidance problem for interceptors is presented in this paper,based on the classical differential geometry curve theory.Firstly,the kinematical equations of the line of sight (LOS) are gained by carefully investigating the rotation principle of LOS,the kinematic equations of LOS are established,and the concepts of curvature and torsion of LOS are proposed.Simultaneously,the new relative dynamic equations between interceptor and target are constructed.Secondly,it is found that there is an instan-taneous rotation plane of LOS (IRPL) in the space,in which two-dimensional (2D) guidance laws could be constructed to solve 3D interception guidance problems.The spatial 3D true proportional navigation (TPN) guidance law could be directly introduced in IRPL without approximation and linearization for dimension-reduced 2D TPN.In addition,the new series of augmented TPN (APN) and LOS angular acceleration guidance laws (AAG) could also be gained in IRPL.After that,the dif-ferential geometric guidance commands (DGGC) of guidance laws in IRPL are advanced,and we prove that the guidance commands in arc-length system proposed by Chiou and Kuo are just a special case of DGGC.Moreover,the performance of the original guidance laws will be reduced after the differential geometric transformation.At last,an exoatmospheric intercep-tion is taken for simulation to demonstrate the differential geometric modeling proposed in this paper.展开更多
With the rapid advancement of technology,not only do we need to acquire a clear in-verse synthetic aperture radar(ISAR)image,but also the real size of the target on the imaging plane,so it’s particularly important fo...With the rapid advancement of technology,not only do we need to acquire a clear in-verse synthetic aperture radar(ISAR)image,but also the real size of the target on the imaging plane,so it’s particularly important for the ISAR to rescale the images.That is,the ISAR image which is in the range-Doppler domain is converted into the range-azimuth domain.Actually,the key point to solving the problem is to estimate the rotation parameters.In this paper,a new scheme to rescale the images is proposed.For the sake of solving the problem of two-dimensional image blur and target high-speed,the instantaneous range instantaneous Doppler(IRID)method is used to obtain ISAR images,and the rotation parameters are estimated by comparing the rotation correlation of the two images.Using this method,the error of the estimated rotation parameters is greatly reduced,so that the target can be rescaled accurately.The simulation results verify the ef-fectiveness of the proposed algorithm.展开更多
In order to monitor the working state of piston motor and measure its instantaneous rotation speed accurately, the measuring principle and method of instantaneous rotation speed based on industrial personal computer a...In order to monitor the working state of piston motor and measure its instantaneous rotation speed accurately, the measuring principle and method of instantaneous rotation speed based on industrial personal computer and data acquisition card are introduced, and the major error source, influence mechanism and processing method of data quantization error are dis- cussed. By means of hybrid programming approach of LabVIEW and MATLAB, the instantaneous rotation speed measurement system for the piston motor in variable speed hydraulic system is designed. The simulation and experimental results show that the designed instantaneous speed measurement system is feasible. Furthermore, the sampling frequency has an important influ- ence on the instantaneous rotation speed measurement of piston motor and higher sampling frequency can lower quantization er- ror and improve measurement accuracy.展开更多
Ideal proportional navigation (IPN) is a natural choice for exoatmospheric interception for its mighty capture capability and ease of implementation. The closed-form solution of two- dimensional ideal proportional n...Ideal proportional navigation (IPN) is a natural choice for exoatmospheric interception for its mighty capture capability and ease of implementation. The closed-form solution of two- dimensional ideal proportional navigation was conducted in previous public literature, whereas the practical interception happens in the three-dimensional space. A novel set of relative dynamic equations is adopted in this paper, which is with the advantage of decoupling relative motion in the instantaneous rotation plane of the line of sight from the rotation of this plane. The dimension-reduced IPN is constructed in this instantaneous plane, which functions as a three-dimensional guidance law. The trajectory features of dimension-reduced IPN are explored, and the capture regions of dimension-reduced IPN with limited acceleration against nonmaneuvering and maneuvering targets are analyzed by using phase plane method. It is proved that the capture capability of IPN is much stronger than true proportional navigation (TPN), no matter the target maneuvers or not. Finally, simulation results indicate that IPN is more effective than TPN in exoatmospheric interception scenarios.展开更多
文摘It is a comparatively convenient technique to investigate the motion of a particle with the help of the differential geometry the-ory,rather than directly decomposing the motion in the Cartesian coordinates.The new model of three-dimensional (3D) guidance problem for interceptors is presented in this paper,based on the classical differential geometry curve theory.Firstly,the kinematical equations of the line of sight (LOS) are gained by carefully investigating the rotation principle of LOS,the kinematic equations of LOS are established,and the concepts of curvature and torsion of LOS are proposed.Simultaneously,the new relative dynamic equations between interceptor and target are constructed.Secondly,it is found that there is an instan-taneous rotation plane of LOS (IRPL) in the space,in which two-dimensional (2D) guidance laws could be constructed to solve 3D interception guidance problems.The spatial 3D true proportional navigation (TPN) guidance law could be directly introduced in IRPL without approximation and linearization for dimension-reduced 2D TPN.In addition,the new series of augmented TPN (APN) and LOS angular acceleration guidance laws (AAG) could also be gained in IRPL.After that,the dif-ferential geometric guidance commands (DGGC) of guidance laws in IRPL are advanced,and we prove that the guidance commands in arc-length system proposed by Chiou and Kuo are just a special case of DGGC.Moreover,the performance of the original guidance laws will be reduced after the differential geometric transformation.At last,an exoatmospheric intercep-tion is taken for simulation to demonstrate the differential geometric modeling proposed in this paper.
基金supported in part by the National Natural Sci-ence Foundation of China(No.61875070)in part by the Science and Technology Development Plan of Jilin Province(No.20180201032GX)+1 种基金in part by the Science and Techno-logy Project of Education Department of Jilin Province(No.JJKH20190110KJ)in part by the Graduate In-novation Fund of Jilin University(No.101832020CX171).
文摘With the rapid advancement of technology,not only do we need to acquire a clear in-verse synthetic aperture radar(ISAR)image,but also the real size of the target on the imaging plane,so it’s particularly important for the ISAR to rescale the images.That is,the ISAR image which is in the range-Doppler domain is converted into the range-azimuth domain.Actually,the key point to solving the problem is to estimate the rotation parameters.In this paper,a new scheme to rescale the images is proposed.For the sake of solving the problem of two-dimensional image blur and target high-speed,the instantaneous range instantaneous Doppler(IRID)method is used to obtain ISAR images,and the rotation parameters are estimated by comparing the rotation correlation of the two images.Using this method,the error of the estimated rotation parameters is greatly reduced,so that the target can be rescaled accurately.The simulation results verify the ef-fectiveness of the proposed algorithm.
基金National Natural Science Foundation of China(No.51275375,No.51509006)Shaanxi Provincial Natural Science Basic Research Plan(No.2014JQ7246)+1 种基金The Science and Technology of Hubei Province(No.B2015115)Doctoral Research Foundation of Hubei University of Automotive Technology(No.BK201403)
文摘In order to monitor the working state of piston motor and measure its instantaneous rotation speed accurately, the measuring principle and method of instantaneous rotation speed based on industrial personal computer and data acquisition card are introduced, and the major error source, influence mechanism and processing method of data quantization error are dis- cussed. By means of hybrid programming approach of LabVIEW and MATLAB, the instantaneous rotation speed measurement system for the piston motor in variable speed hydraulic system is designed. The simulation and experimental results show that the designed instantaneous speed measurement system is feasible. Furthermore, the sampling frequency has an important influ- ence on the instantaneous rotation speed measurement of piston motor and higher sampling frequency can lower quantization er- ror and improve measurement accuracy.
基金co-supported by the National Science Foundation of China(No.11222215)the National Basic Research Program of China(No.2013CB733100)
文摘Ideal proportional navigation (IPN) is a natural choice for exoatmospheric interception for its mighty capture capability and ease of implementation. The closed-form solution of two- dimensional ideal proportional navigation was conducted in previous public literature, whereas the practical interception happens in the three-dimensional space. A novel set of relative dynamic equations is adopted in this paper, which is with the advantage of decoupling relative motion in the instantaneous rotation plane of the line of sight from the rotation of this plane. The dimension-reduced IPN is constructed in this instantaneous plane, which functions as a three-dimensional guidance law. The trajectory features of dimension-reduced IPN are explored, and the capture regions of dimension-reduced IPN with limited acceleration against nonmaneuvering and maneuvering targets are analyzed by using phase plane method. It is proved that the capture capability of IPN is much stronger than true proportional navigation (TPN), no matter the target maneuvers or not. Finally, simulation results indicate that IPN is more effective than TPN in exoatmospheric interception scenarios.