从遥感图像中自动化地检测和提取建筑物在城市规划、人口估计、地形图制作和更新等应用中具有极为重要的意义。本文提出和展示了建筑物提取的数个研究进展。由于遥感成像机理、建筑物自身、背景环境的复杂性,传统的经验设计特征的方法...从遥感图像中自动化地检测和提取建筑物在城市规划、人口估计、地形图制作和更新等应用中具有极为重要的意义。本文提出和展示了建筑物提取的数个研究进展。由于遥感成像机理、建筑物自身、背景环境的复杂性,传统的经验设计特征的方法一直未能实现自动化,建筑物提取成为30余年尚未解决的挑战。先进的深度学习方法带来新的机遇,但目前存在两个困境:①尚缺少高精度的建筑物数据库,而数据是深度学习必不可少的"燃料";②目前国际上的方法都采用像素级的语义分割,目标级、矢量级的提取工作亟待开展。针对于此,本文进行以下工作:①与目前同类数据集相比,建立了一套目前国际上范围最大、精度最高、涵盖多种样本形式(栅格、矢量)、多类数据源(航空、卫星)的建筑物数据库(WHU building dataset),并实现开源;②提出一种基于全卷积网络的建筑物语义分割方法,与当前国际上的最新算法相比达到了领先水平;③将建筑物提取的范围从像素级的语义分割推广至目标实例分割,实现以目标(建筑物)为对象的识别和提取。通过试验,验证了WHU数据库在国际上的领先性和本文方法的先进性。展开更多
为提升动态场景中视觉SLAM(Simultaneous Localization and Mapping)系统的定位精度和鲁棒性,提出一种基于光流和实例分割的视觉SLAM方法。针对动态物体和静态背景光流方向的不一致性,提出一种高实时性动态区域掩模检测算法,从而在ORB-S...为提升动态场景中视觉SLAM(Simultaneous Localization and Mapping)系统的定位精度和鲁棒性,提出一种基于光流和实例分割的视觉SLAM方法。针对动态物体和静态背景光流方向的不一致性,提出一种高实时性动态区域掩模检测算法,从而在ORB-SLAM2原有跟踪线程中实时地剔除处于动态区域掩模中的特征点。利用已有深度图和跟踪线程位姿估计的信息去除相机运动相关光流,然后聚类动态物体自身运动产生的光流幅值,从而实现高精度的动态区域掩模检测,并结合对极几何约束剔除局部建图线程中的动态路标点。在TUM和KITTI数据集上的测试结果表明,在高动态场景下,本文算法相较ORB-SLAM2、Detect-SLAM、DS-SLAM,定位精度平均提升97%、64%和44%。相较DynaSLAM,本文算法在一半的高动态场景中定位精度平均提升20%,这验证了本文算法在高动态场景中提升了系统定位精度和鲁棒性。展开更多
文摘从遥感图像中自动化地检测和提取建筑物在城市规划、人口估计、地形图制作和更新等应用中具有极为重要的意义。本文提出和展示了建筑物提取的数个研究进展。由于遥感成像机理、建筑物自身、背景环境的复杂性,传统的经验设计特征的方法一直未能实现自动化,建筑物提取成为30余年尚未解决的挑战。先进的深度学习方法带来新的机遇,但目前存在两个困境:①尚缺少高精度的建筑物数据库,而数据是深度学习必不可少的"燃料";②目前国际上的方法都采用像素级的语义分割,目标级、矢量级的提取工作亟待开展。针对于此,本文进行以下工作:①与目前同类数据集相比,建立了一套目前国际上范围最大、精度最高、涵盖多种样本形式(栅格、矢量)、多类数据源(航空、卫星)的建筑物数据库(WHU building dataset),并实现开源;②提出一种基于全卷积网络的建筑物语义分割方法,与当前国际上的最新算法相比达到了领先水平;③将建筑物提取的范围从像素级的语义分割推广至目标实例分割,实现以目标(建筑物)为对象的识别和提取。通过试验,验证了WHU数据库在国际上的领先性和本文方法的先进性。
文摘为提升动态场景中视觉SLAM(Simultaneous Localization and Mapping)系统的定位精度和鲁棒性,提出一种基于光流和实例分割的视觉SLAM方法。针对动态物体和静态背景光流方向的不一致性,提出一种高实时性动态区域掩模检测算法,从而在ORB-SLAM2原有跟踪线程中实时地剔除处于动态区域掩模中的特征点。利用已有深度图和跟踪线程位姿估计的信息去除相机运动相关光流,然后聚类动态物体自身运动产生的光流幅值,从而实现高精度的动态区域掩模检测,并结合对极几何约束剔除局部建图线程中的动态路标点。在TUM和KITTI数据集上的测试结果表明,在高动态场景下,本文算法相较ORB-SLAM2、Detect-SLAM、DS-SLAM,定位精度平均提升97%、64%和44%。相较DynaSLAM,本文算法在一半的高动态场景中定位精度平均提升20%,这验证了本文算法在高动态场景中提升了系统定位精度和鲁棒性。