期刊文献+
共找到466篇文章
< 1 2 24 >
每页显示 20 50 100
遥感影像建筑物提取的卷积神经元网络与开源数据集方法 被引量:100
1
作者 季顺平 魏世清 《测绘学报》 EI CSCD 北大核心 2019年第4期448-459,共12页
从遥感图像中自动化地检测和提取建筑物在城市规划、人口估计、地形图制作和更新等应用中具有极为重要的意义。本文提出和展示了建筑物提取的数个研究进展。由于遥感成像机理、建筑物自身、背景环境的复杂性,传统的经验设计特征的方法... 从遥感图像中自动化地检测和提取建筑物在城市规划、人口估计、地形图制作和更新等应用中具有极为重要的意义。本文提出和展示了建筑物提取的数个研究进展。由于遥感成像机理、建筑物自身、背景环境的复杂性,传统的经验设计特征的方法一直未能实现自动化,建筑物提取成为30余年尚未解决的挑战。先进的深度学习方法带来新的机遇,但目前存在两个困境:①尚缺少高精度的建筑物数据库,而数据是深度学习必不可少的"燃料";②目前国际上的方法都采用像素级的语义分割,目标级、矢量级的提取工作亟待开展。针对于此,本文进行以下工作:①与目前同类数据集相比,建立了一套目前国际上范围最大、精度最高、涵盖多种样本形式(栅格、矢量)、多类数据源(航空、卫星)的建筑物数据库(WHU building dataset),并实现开源;②提出一种基于全卷积网络的建筑物语义分割方法,与当前国际上的最新算法相比达到了领先水平;③将建筑物提取的范围从像素级的语义分割推广至目标实例分割,实现以目标(建筑物)为对象的识别和提取。通过试验,验证了WHU数据库在国际上的领先性和本文方法的先进性。 展开更多
关键词 建筑物提取 语义分割 实例分割 卷积神经元网络 深度学习
下载PDF
基于深度学习的群猪图像实例分割方法 被引量:46
2
作者 高云 郭继亮 +3 位作者 黎煊 雷明刚 卢军 童宇 《农业机械学报》 EI CAS CSCD 北大核心 2019年第4期179-187,共9页
群养饲喂模式下猪群有聚集在一起的习性,特别是躺卧时,当使用机器视觉跟踪监测猪只时,图像中存在猪体粘连,导致分割困难,成为实现群猪视觉追踪和监测的瓶颈。根据实例分割原理,把猪群中的猪只看作一个实例,在深度卷积神经网络基础上建立... 群养饲喂模式下猪群有聚集在一起的习性,特别是躺卧时,当使用机器视觉跟踪监测猪只时,图像中存在猪体粘连,导致分割困难,成为实现群猪视觉追踪和监测的瓶颈。根据实例分割原理,把猪群中的猪只看作一个实例,在深度卷积神经网络基础上建立Pig Net网络,对群猪图像尤其是对粘连猪体进行实例分割,实现独立猪体的分辨和定位。Pig Net网络采用44层卷积层作为主干网络,经区域候选网络(Region proposal networks,RPN)提取感兴趣区域(ROI),并和主干网络前向传播的特征图共享给感兴趣区域对齐层(Region of interest align,ROIAlign),分支通过双线性插值计算目标空间,三分支并行输出ROI目标的类别、回归框和掩模。Mask分支采用平均二值交叉熵损失函数计算独立猪体的目标掩模损失。连续28 d采集6头9. 6 kg左右大白仔猪图像,抽取前7 d内各不同时段、不同行为模式群养猪图像2 500幅作为训练集和验证集,训练集和验证集的比例为4∶1。结果表明,Pig Net网络模型在训练集上总分割准确率达86. 15%,在验证集上准确率达85. 40%。本文算法对不同形态、粘连严重的群猪图像能够准确分割出独立的猪个体目标。将本文算法与Mask R-CNN模型及其改进模型进行对比,准确率比Mask RCNN模型高11. 40个百分点,单幅图像处理时间为2. 12 s,比Mask R-CNN模型短30 ms。 展开更多
关键词 群养猪 图像分割 实例分割 卷积神经网络 深度学习 粘连猪体
下载PDF
基于深度学习的实例分割研究综述 被引量:33
3
作者 苏丽 孙雨鑫 苑守正 《智能系统学报》 CSCD 北大核心 2022年第1期16-31,共16页
深度学习在计算机视觉领域已经取得很大发展,虽然基于深度学习的实例分割研究近年来才成为研究热点,但其技术可广泛应用在自动驾驶,辅助医疗和遥感影像等领域。实例分割作为计算机视觉的基础问题之一,不仅需要对不同类别目标进行像素级... 深度学习在计算机视觉领域已经取得很大发展,虽然基于深度学习的实例分割研究近年来才成为研究热点,但其技术可广泛应用在自动驾驶,辅助医疗和遥感影像等领域。实例分割作为计算机视觉的基础问题之一,不仅需要对不同类别目标进行像素级别分割,还要对不同目标进行区分。此外,目标形状的灵活性,不同目标间的遮挡和繁琐的数据标注问题都使实例分割任务面临极大的挑战。本文对实例分割中一些具有价值的研究成果按照两阶段和单阶段两部分进行了系统性的总结,分析了不同算法的优缺点并对比了模型在COCO数据集上的测试性能,归纳了实例分割在特殊条件下的应用,简要介绍了常用数据集和评价指标。最后,对实例分割未来可能的发展方向及其面临的挑战进行了展望。 展开更多
关键词 计算机视觉 实例分割 图像分割 卷积神经网络 深度学习 目标检测 两阶段实例分割 单阶段实例分割
下载PDF
基于Mask R-CNN的铸件X射线DR图像缺陷检测研究 被引量:38
4
作者 蔡彪 沈宽 +1 位作者 付金磊 张理泽 《仪器仪表学报》 EI CAS CSCD 北大核心 2020年第3期61-69,共9页
针对传统的铸件缺陷检测不能对缺陷进行分类分级等问题,提出了一种基于Mask R-CNN的铸件X射线DR图像缺陷检测算法。首先对原始图像进行预处理,采用引导滤波进行图像平滑,平滑图像与原图像进行差分得到差分图像,将差分图像与平滑图像相... 针对传统的铸件缺陷检测不能对缺陷进行分类分级等问题,提出了一种基于Mask R-CNN的铸件X射线DR图像缺陷检测算法。首先对原始图像进行预处理,采用引导滤波进行图像平滑,平滑图像与原图像进行差分得到差分图像,将差分图像与平滑图像相加运算使图像增强,再利用Labelme进行图像标注,形成训练数据集。送入Mask R-CNN深度学习网络,通过特征提取网络生成建议区域,分类、回归网络生成边界框和掩码,经多次参数调节后得到训练网络模型,最后测试数据集。实验数据结果表明,气泡1~5级的检测率分别为:66.7%,71.4%,77.4%,88.9%,87.5%;疏松1~5级检测率为:62.5%,72.2%,77.1%,83.3%,81.1%。检测结果证明应用Mask R-CNN结合引导滤波增强方法的缺陷检测方法可以较好的实现对铸件X射线DR图像的缺陷检测的分级分类,为工业铸件缺陷检测提供了应用深度学习方法的解决方案。 展开更多
关键词 Mask R-CNN 深度学习 铸件缺陷 引导滤波 实例分割
下载PDF
基于深度学习的数字病理图像分割综述与展望 被引量:28
5
作者 宋杰 肖亮 +2 位作者 练智超 蔡子贇 蒋国平 《软件学报》 EI CSCD 北大核心 2021年第5期1427-1460,共34页
数字病理图像分析对于乳腺癌、前列腺癌等良恶性分级诊断具有重要意义,其中,组织基元的形态和目标测量是量化分析的重要依据.然而,由于病理数据多样性和复杂性等新特点,其分割任务面临着特征提取困难、实例分割困难等挑战.人工智能辅助... 数字病理图像分析对于乳腺癌、前列腺癌等良恶性分级诊断具有重要意义,其中,组织基元的形态和目标测量是量化分析的重要依据.然而,由于病理数据多样性和复杂性等新特点,其分割任务面临着特征提取困难、实例分割困难等挑战.人工智能辅助病理量化分析将复杂病理数据转化为可挖掘的图像特征,使得自动提取组织基元的定量化信息成为可能.特别是随着计算机计算能力的快速发展,深度学习技术凭借其强大的特征学习、设计灵活等特性在数字病理量化分析领域取得了突破性成果.系统概述目前代表性深度学习方法,包括卷积神经网络、全卷积网络、编码器-解码器模型、循环神经网络、生成对抗网络等方法体系,总结深度学习在病理图像分割等任务中的建模机理和应用,并梳理了现有方法的方法理论、关键技术、优缺点和性能分析.最后讨论了未来数字病理图像分割深度学习建模的开放性挑战和新趋势. 展开更多
关键词 数字病理 组织基元 实例分割 特征表示学习 深度模型
下载PDF
改进Mask R-CNN的交通场景多目标快速检测与分割 被引量:25
6
作者 伍锡如 邱涛涛 王耀南 《仪器仪表学报》 EI CAS CSCD 北大核心 2021年第7期242-249,共8页
针对智能驾驶中出现的交通场景多目标检测与分割效率低、鲁棒性差等问题,提出一种改进的Mask R-CNN交通场景多目标快速检测与分割方法。首先采用轻量级MobileNet作为骨干网络,有效减少网络参数并压缩模型体积,提升后续嵌入式端的算法移... 针对智能驾驶中出现的交通场景多目标检测与分割效率低、鲁棒性差等问题,提出一种改进的Mask R-CNN交通场景多目标快速检测与分割方法。首先采用轻量级MobileNet作为骨干网络,有效减少网络参数并压缩模型体积,提升后续嵌入式端的算法移植能力,其次通过优化FPN与骨干网络卷积结构,保证高底层之间特征信息的完整传递,通过调整超参数得到交通场景多目标检测与分割改进网络模型。设计不同交通场景下的对比实验,改进网络能够准确实现多目标的检测与分割,平均检测精度可达85.2%。在ApolloScape和NuScence数据集上进行迁移实验,改进网络展示出良好的泛化能力。本文所提出的改进骨干网络与网络结构优化,能够适应多种复杂交通场景,完成交通场景多目标的快速检测与分割,为智能驾驶提供了理论依据与技术方案。 展开更多
关键词 MobileNet 目标检测 实例分割 深度学习
下载PDF
基于深度学习的图像实例分割技术研究进展 被引量:24
7
作者 梁新宇 林洗坤 +1 位作者 权冀川 肖铠鸿 《电子学报》 EI CAS CSCD 北大核心 2020年第12期2476-2486,共11页
随着深度学习算法在图像分割领域的成功应用,在图像实例分割方向上涌现出一大批优秀的算法架构.这些架构在分割效果、运行速度等方面都超越了传统方法.本文围绕图像实例分割技术的最新研究进展,对现阶段经典网络架构和前沿网络架构进行... 随着深度学习算法在图像分割领域的成功应用,在图像实例分割方向上涌现出一大批优秀的算法架构.这些架构在分割效果、运行速度等方面都超越了传统方法.本文围绕图像实例分割技术的最新研究进展,对现阶段经典网络架构和前沿网络架构进行梳理总结,结合常用数据集和权威评价指标对各个架构的分割效果进行比较和分析.最后,对目前图像实例分割技术面临的挑战以及可能的发展趋势进行了展望. 展开更多
关键词 深度学习 图像分割 实例分割
下载PDF
基于实例分割的柑橘花朵识别及花量统计 被引量:23
8
作者 邓颖 吴华瑞 朱华吉 《农业工程学报》 EI CAS CSCD 北大核心 2020年第7期200-207,共8页
柑橘隔年结果现象严重,花量统计有助于果园的规划管理,并对产量预测有重要意义,但是柑橘单一植株花量巨大,花朵紧凑密集,花期树叶遮挡覆盖,对花量计算造成很大的阻碍。对此该研究提出基于实例分割的柑橘花朵识别与花量统计方法,以花期... 柑橘隔年结果现象严重,花量统计有助于果园的规划管理,并对产量预测有重要意义,但是柑橘单一植株花量巨大,花朵紧凑密集,花期树叶遮挡覆盖,对花量计算造成很大的阻碍。对此该研究提出基于实例分割的柑橘花朵识别与花量统计方法,以花期的柑橘树冠图像为样本进行花朵实例的识别及分割,通过对Mask R-CNN主体卷积部分和掩膜分支部分的优化,实现对复杂结构图像中密集小尺度柑橘花朵目标的高效检测、获取图像中可见花数量。结果显示,该方法花量识别神经网络的平均精度为36.3,花量计算误差为11.9%,对比未优化Mask R-CNN网络在训练和识别的时间效率上均有显著提升。该研究解决了柑橘花量统计难度高的问题,有助于柑橘早期测产和落花监测,并为花量控制提供决策依据。 展开更多
关键词 图像处理 目标检测 算法 花朵识别 花量计算 实例分割 残差神经网络
下载PDF
基于Mask R-CNN的舰船目标检测研究 被引量:21
9
作者 吴金亮 王港 +2 位作者 梁硕 陈金勇 高峰 《无线电工程》 2018年第11期35-40,共6页
随着深度学习在计算机视觉、图像处理以及遥感信息处理领域的逐步应用,目标检测识别、图像语义分割等应用取得了巨大的突破。但是遥感影像目标中,舰船目标具有形状细长、多个目标紧密排列等特点,应用传统的目标检测框架易出现漏检、误... 随着深度学习在计算机视觉、图像处理以及遥感信息处理领域的逐步应用,目标检测识别、图像语义分割等应用取得了巨大的突破。但是遥感影像目标中,舰船目标具有形状细长、多个目标紧密排列等特点,应用传统的目标检测框架易出现漏检、误检等问题。针对上述问题,提出基于Mask R-CNN框架的舰船目标检测识别方法,通过候选框与像素分割曲线相结合的思路,较好地解决了紧密排列舰船目标的检测问题。实验结果表明,基于Mask R-CNN的舰船目标检测结果具有较高的准确度,在解决紧密排列目标和多尺度目标的检测问题上具有较好性能。 展开更多
关键词 MASK R-CNN 舰船检测 目标检测 深度学习 紧密排列 实例分割
下载PDF
AS-PANet:改进路径增强网络的重叠染色体实例分割 被引量:19
10
作者 林成创 赵淦森 +3 位作者 尹爱华 丁笔超 郭莉 陈汉彪 《中国图象图形学报》 CSCD 北大核心 2020年第10期2271-2280,共10页
目的染色体是遗传信息的重要载体,健康的人体细胞中包含46条染色体,包括22对常染色体和1对性染色体。染色体核型化分析是产前诊断和遗产疾病诊断的重要且常用方法。染色体核型化分析是指从分裂中期的细胞显微镜图像中,分割出染色体并根... 目的染色体是遗传信息的重要载体,健康的人体细胞中包含46条染色体,包括22对常染色体和1对性染色体。染色体核型化分析是产前诊断和遗产疾病诊断的重要且常用方法。染色体核型化分析是指从分裂中期的细胞显微镜图像中,分割出染色体并根据染色体的条带进行分组排列的过程。染色体核型化分析通常由细胞学家手工完成,但是这个过程非常费时、繁琐且容易出错。由于染色体的非刚性特质,多条染色体之间存在重叠及交叉现象,致使染色体实例分割非常困难。染色体分割是染色体核型化分析过程中最重要且最困难的一步,因此本文旨在解决重叠、交叉染色体实例分割问题。方法本文基于路径增强网络(PANet)模型,提出AS-PANet(amount segmentation PANet)模型用于解决重叠染色体实例分割问题。在路径增强网络的基础上引入染色体计数领域知识预测作为模型的一个预测分支,并改进了路径增强网络的模型结构和损失函数,使图像分类、目标检测、实例分割和染色体计数4个子任务共享卷积特征,进行联合训练。在临床染色体图像数据上进行标注并构建训练集和测试集,同时提出有效的数据增广方法用以扩充染色体标注训练数据集,提升模型的训练效果。结果在临床染色体数据集中开展实证研究实验。实验结果表明,本文方法在临床染色体数据集中,平均分割精度mAP(mean average precision)为90.63%。该结果比PANet提升了1.18%,比基线模型Mask R-CNN提升了2.85%。分割准确率为85%,相比PANet提升了2%,相比Mask R-CNN(region with convolutional neural network)提升3.75%。结论本文染色体实例分割方法能够更有效地解决临床染色体分割问题,相比现有的方法,分割效果更好。 展开更多
关键词 AS-PANet 路径增强网络 染色体分割 实例分割 染色体核型分析
原文传递
基于改进实例分割算法的智能猪只盘点系统设计 被引量:20
11
作者 胡云鸽 苍岩 乔玉龙 《农业工程学报》 EI CAS CSCD 北大核心 2020年第19期177-183,共7页
基于图像处理的动物资产计数方法,不仅可以减少人工投入,还可以缩短生物资产的计数周期,但该方法受光照条件影响严重,并且当动物间相互挤压、遮挡时,计数精度较差。针对这些问题,该研究提出了一种基于图像实例分割算法的生猪计数网络。... 基于图像处理的动物资产计数方法,不仅可以减少人工投入,还可以缩短生物资产的计数周期,但该方法受光照条件影响严重,并且当动物间相互挤压、遮挡时,计数精度较差。针对这些问题,该研究提出了一种基于图像实例分割算法的生猪计数网络。针对光照和目标边缘模糊问题,利用拉普拉斯算子进行图像预处理。对Mask R-CNN网络的特征提取网络进行改进,在原始特征金字塔网络(Feature Pyramid Network,FPN)后面增加一条自底向上的增强路径,直接将低层边缘位置特征与高层特征相融合,提高对目标边缘轮廓的识别能力,对非极大值抑制过程和损失函数进行优化和改进,以提高分割精度。在河北丰宁、吉林金源和内蒙古正大3个试验猪场进行测试,验证本文网络的计数精度。采集设备在3个试验猪场共采集2400张图像,经图像预处理去除模糊和光线差的图像,从剩余的图像中随机选取共1250张图像作为原始数据集,其中丰宁猪场500张、金源猪场500张,正大猪场250张。将各猪场的原始数据集分别按2:2:1的比例分为3部分,包括训练集905张,验证集95张,测试集250张,对原始训练集和验证集进行数据增强,最终得到训练集图像1500张,验证集图像150张,测试集图想250张。河北和吉林的试验猪场,每栏猪只数目为12~22头,各测试100张图像,完全准确清点的图像比例分别为98%和99%,满足实际应用要求。内蒙古试验猪场的单栏猪只密度大,每栏猪只数目平均80头,测试50张图像,完全准确清点的图像比例为86%。该研究所提出的猪只盘点系统,通过修改网络增强图像中目标特征信息提取和优化边界框回归过程,减少由于光线差和遮挡导致的目标漏检情况,解决了基于图像分割算法的猪只盘点中光照、模糊以及遮挡等问题,能够满足单栏饲养密度为1.03~1.32头/m^2的养殖场的猪只盘点需求。 展开更多
关键词 图像处理 算法 目标检测 实例分割 猪只计数 深度学习 特征金字塔网络
下载PDF
基于深度学习的动态场景语义SLAM 被引量:18
12
作者 房立金 刘博 万应才 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2020年第1期121-126,共6页
提出一种利用深度学习提高动态环境下视觉语义即时定位与地图构建(SLAM)的方法.首先用实例分割网络对关键帧进行实例分割,建立先验语义信息;然后计算特征点光流场对物体进一步区分,识别出场景真正运动物体并将属于动态物体的特征点去除... 提出一种利用深度学习提高动态环境下视觉语义即时定位与地图构建(SLAM)的方法.首先用实例分割网络对关键帧进行实例分割,建立先验语义信息;然后计算特征点光流场对物体进一步区分,识别出场景真正运动物体并将属于动态物体的特征点去除;最后进行语义关联,建立无动态物体干扰的语义地图.将本文方法在室内环境公开数据集中测试,结果表明该方法可有效消除动态物体对建图的影响,提高建图精度. 展开更多
关键词 即时定位与地图构建 动态环境 实例分割 光流场 语义地图
原文传递
一种改进的Mask RCNN特征融合实例分割方法 被引量:18
13
作者 温尧乐 李林燕 +1 位作者 尚欣茹 胡伏原 《计算机应用与软件》 北大核心 2019年第10期130-133,共4页
实例分割需要兼顾像素级的分类准确性和目标实例级的高级语义特性,非常具有挑战性。由于特征金字塔网络低层特征到高层特征的融合路径太长,导致低层特征在整个特征层次中的作用较弱。在特征金字塔网络的基础上,引入一条自下而上的路径... 实例分割需要兼顾像素级的分类准确性和目标实例级的高级语义特性,非常具有挑战性。由于特征金字塔网络低层特征到高层特征的融合路径太长,导致低层特征在整个特征层次中的作用较弱。在特征金字塔网络的基础上,引入一条自下而上的路径来增强整个特征层次,缩短较低层特征与顶部特征之间的融合路径,增强低层特征在整个特征层次中的作用;在卷积神经网络中引入空洞卷积算法扩大卷积感受域,进一步提升掩膜预测准确度。在MicrosoftCOCO数据集测试结果表明,该方法有效提高了实例分割的准确度。 展开更多
关键词 实例分割 特征融合 卷积神经网络 空洞卷积
下载PDF
基于多任务学习的高分辨率遥感影像建筑实例分割 被引量:17
14
作者 惠健 秦其明 +1 位作者 许伟 隋娟 《北京大学学报(自然科学版)》 EI CAS CSCD 北大核心 2019年第6期1067-1077,共11页
针对基于深度神经网络的高分辨率遥感影像建筑物提取算法中将建筑物提取视为二分类问题(即将遥感影像中的像素点划分为建筑物与非建筑两类)而无法区分建筑物个体的局限性,将基于Xception module改进的U-Net深度神经网络方法与多任务学... 针对基于深度神经网络的高分辨率遥感影像建筑物提取算法中将建筑物提取视为二分类问题(即将遥感影像中的像素点划分为建筑物与非建筑两类)而无法区分建筑物个体的局限性,将基于Xception module改进的U-Net深度神经网络方法与多任务学习方法相结合进行建筑物实例分割,在获取建筑物二分类结果的同时,区分不同建筑物个体,并选择Inria航空影像数据集对该方法进行验证。结果表明,在高分辨率遥感影像的建筑物二分类提取方面,基于Xception module改进的U-Net方法明显优于U-Net方法,提取精度升高1.4%;结合多任务学习的深度神经网络方法不仅能够实现建筑物的实例分割,而且可将二分类建筑物的提取精度提升约0.5%。 展开更多
关键词 多任务学习 建筑物提取 深度神经网络 实例分割
下载PDF
基于实例分割网络与迭代优化方法的3D视觉分拣系统 被引量:17
15
作者 王德明 颜熠 +4 位作者 周光亮 李勇奇 刘成菊 林立民 陈启军 《机器人》 EI CSCD 北大核心 2019年第5期637-648,共12页
针对工业上常见的弱纹理、散乱堆叠的物体的检测和位姿估计问题,提出了一种基于实例分割网络与迭代优化方法的工件识别抓取系统.该系统包括图像获取、目标检测和位姿估计3个模块.图像获取模块中,设计了一种对偶RGB-D相机结构,通过融合3... 针对工业上常见的弱纹理、散乱堆叠的物体的检测和位姿估计问题,提出了一种基于实例分割网络与迭代优化方法的工件识别抓取系统.该系统包括图像获取、目标检测和位姿估计3个模块.图像获取模块中,设计了一种对偶RGB-D相机结构,通过融合3张深度图像来获得更高质量的深度数据;目标检测模块对实例分割网络Mask R-CNN(region-based convolutional neural network)进行了改进,同时以彩色图像和包含3维信息的HHA(horizontal disparity,height above ground,angle with gravity)特征作为输入,并在其内部增加了STN(空间变换网络)模块,提升对弱纹理物体的分割性能,结合点云信息分割目标点云;在目标检测模块的基础上,位姿估计模块利用改进的4PCS(4-points congruent set)算法和ICP(迭代最近点)算法将分割出的点云和目标模型的点云进行匹配和位姿精修,得到最终位姿估计的结果,机器人根据此结果完成抓取动作.在自采工件数据集上和实际搭建的分拣系统上进行实验,结果表明,该抓取系统能够对不同形状、弱纹理、散乱堆叠的物体实现快速的目标识别和位姿估计,位置误差可达1 mm,角度误差可达1°,其性能可满足实际应用的要求. 展开更多
关键词 3维物体识别 位姿估计 弱纹理物体 RGB-D 实例分割 分拣系统
原文传递
基于高分辨率特征的舌象分割算法研究 被引量:16
16
作者 马龙祥 杨浩 +2 位作者 宋婷婷 翟鹏博 余亢 《计算机工程》 CAS CSCD 北大核心 2020年第10期248-252,共5页
舌象的精准分割对舌诊中舌体识别与分类具有重要意义,采用传统图像处理方法和深度学习方法分割舌象会丢失部分舌象边缘信息,从而降低舌体识别精确度。针对该问题,提出一种利用高分辨率网络的舌象分割算法。使用区域定位网络识别舌体并... 舌象的精准分割对舌诊中舌体识别与分类具有重要意义,采用传统图像处理方法和深度学习方法分割舌象会丢失部分舌象边缘信息,从而降低舌体识别精确度。针对该问题,提出一种利用高分辨率网络的舌象分割算法。使用区域定位网络识别舌体并提取舌象原图特征生成建议框,对其进行分类和回归处理以定位舌象所在区域,同时构建高分辨率网络提取该区域高分辨率特征,最终完成舌象分割。实验结果表明,该算法可有效保留舌象边缘信息,其分割结果平均交并比达到98.2%,较SegNet、Mask-RCNN算法分割舌象更精准。 展开更多
关键词 舌诊 舌象 深度学习 高分辨率特征 实例分割
下载PDF
果园机器人视觉导航行间位姿估计与果树目标定位方法 被引量:16
17
作者 毕松 王宇豪 《农业机械学报》 EI CAS CSCD 北大核心 2021年第8期16-26,39,共12页
针对单目视觉导航中位姿信息不完整和果树定位精度低的问题,提出基于实例分割神经网络的偏航角、横向偏移、果树位置计算方法。首先,基于Mask R-CNN模型识别并分割道路与树干;其次,寻找道路掩码凸包并进行霍夫变换,由凸包中的边界方程... 针对单目视觉导航中位姿信息不完整和果树定位精度低的问题,提出基于实例分割神经网络的偏航角、横向偏移、果树位置计算方法。首先,基于Mask R-CNN模型识别并分割道路与树干;其次,寻找道路掩码凸包并进行霍夫变换,由凸包中的边界方程计算消失点坐标;最后,根据建立的位姿道路成像几何模型,计算偏航角、横向偏移与果树相对位置。实验结果表明:改进Mask R-CNN模型的边框回归平均精确度为0.564,分割平均精确度为0.559,平均推理时间为110 ms。基于本文方法的偏航角估计误差为2.91%、横向偏移误差为4.82%,果树横向定位误差为3.80%,纵向误差为2.65%。该方法能在不同位姿稳定地提取道路与果树掩码、计算消失点坐标与边界方程,较准确地估计偏航角、横向位移和果树相对位置,为果园环境下的视觉自主导航提供有效参考。 展开更多
关键词 果园机器人 视觉自主导航 实例分割 单目相机模型 位姿估计 果树定位
下载PDF
动态场景下基于光流和实例分割的视觉SLAM方法 被引量:15
18
作者 徐陈 周怡君 罗晨 《光学学报》 EI CAS CSCD 北大核心 2022年第14期139-151,共13页
为提升动态场景中视觉SLAM(Simultaneous Localization and Mapping)系统的定位精度和鲁棒性,提出一种基于光流和实例分割的视觉SLAM方法。针对动态物体和静态背景光流方向的不一致性,提出一种高实时性动态区域掩模检测算法,从而在ORB-S... 为提升动态场景中视觉SLAM(Simultaneous Localization and Mapping)系统的定位精度和鲁棒性,提出一种基于光流和实例分割的视觉SLAM方法。针对动态物体和静态背景光流方向的不一致性,提出一种高实时性动态区域掩模检测算法,从而在ORB-SLAM2原有跟踪线程中实时地剔除处于动态区域掩模中的特征点。利用已有深度图和跟踪线程位姿估计的信息去除相机运动相关光流,然后聚类动态物体自身运动产生的光流幅值,从而实现高精度的动态区域掩模检测,并结合对极几何约束剔除局部建图线程中的动态路标点。在TUM和KITTI数据集上的测试结果表明,在高动态场景下,本文算法相较ORB-SLAM2、Detect-SLAM、DS-SLAM,定位精度平均提升97%、64%和44%。相较DynaSLAM,本文算法在一半的高动态场景中定位精度平均提升20%,这验证了本文算法在高动态场景中提升了系统定位精度和鲁棒性。 展开更多
关键词 机器视觉 视觉里程计 动态场景 光流 运动物体检测 实例分割
原文传递
基于深度学习的实例分割研究进展 被引量:15
19
作者 李晓筱 胡晓光 +1 位作者 王梓强 杜卓群 《计算机工程与应用》 CSCD 北大核心 2021年第9期60-67,共8页
目标检测确定检测图像中目标对象所在区域及其类别,语义分割对检测图像实现像素级分类,实例分割可以定义为同时解决目标检测与语义分割问题,在分类的同时确定每个目标实例语义。实例分割网络在无人机驾驶、机器人抓取、工业筛检等领域... 目标检测确定检测图像中目标对象所在区域及其类别,语义分割对检测图像实现像素级分类,实例分割可以定义为同时解决目标检测与语义分割问题,在分类的同时确定每个目标实例语义。实例分割网络在无人机驾驶、机器人抓取、工业筛检等领域具有重要应用意义,针对目前基于深度学习实例分割综述性文章的空白,对实例分割进展进行概述,按照单阶段实例分割与双阶段实例分割的分类对不同网络模型进行论述,重点介绍近两年网络框架的发展,总结各网络特点的同时提出未来发展方向。 展开更多
关键词 实例分割 深度学习 语义分割
下载PDF
基于Mask R-CNN的葡萄叶片实例分割 被引量:15
20
作者 乔虹 冯全 +1 位作者 赵兵 王书志 《林业机械与木工设备》 2019年第10期15-22,共8页
在大田环境下对葡萄生长状态和病虫害进行长期动态自动监测,需要对监控摄像头拍摄的每张单个叶片进行实例分割,工作量大,为解决这一问题采用了基于MaskR-CNN的实例分割算法。该算法是在Faster R-CNN的基础上增加一个能在候选区域上进行... 在大田环境下对葡萄生长状态和病虫害进行长期动态自动监测,需要对监控摄像头拍摄的每张单个叶片进行实例分割,工作量大,为解决这一问题采用了基于MaskR-CNN的实例分割算法。该算法是在Faster R-CNN的基础上增加一个能在候选区域上进行分割任务的分支,葡萄叶片图像首先通过区域卷积神经网络生成候选区域,利用FastR-CNN的卷积层提取葡萄叶片的整体特征,得到特征图;再由ROIAlign对特征图进行像素校正,并对每一个ROI预测,得到其类别及预测框,每一个ROI再通过一个全卷积网络对每个像素进行分类和分割。对不同天气下正常的葡萄叶片、病害叶片以及不同品种的葡萄叶片图像进行分割试验,结果表明,本算法对正常叶片、病害叶片及不同品种叶片分割的平均精度(average precision,AP)分别是0.9108、0.9068、0.9044、0.8845、0.9028。该方法对不同天气及复杂背景下的叶片实例分割都具有较好的鲁棒性和较高的精度。 展开更多
关键词 MaskR-CNN 实例分割 复杂背景 天气条件 葡萄叶片
下载PDF
上一页 1 2 24 下一页 到第
使用帮助 返回顶部