针对鄂尔多斯靖南地区水平井钻井过程中存在的煤层、碳质泥地层井壁失稳和定向钻井托压问题,开展了钻井液抑制防塌、地层封堵和润滑减阻技术研究,形成了具有良好防塌、润滑能力的钻井液配方,页岩滚动一次回收率≥98%,极压润滑系数达0.0...针对鄂尔多斯靖南地区水平井钻井过程中存在的煤层、碳质泥地层井壁失稳和定向钻井托压问题,开展了钻井液抑制防塌、地层封堵和润滑减阻技术研究,形成了具有良好防塌、润滑能力的钻井液配方,页岩滚动一次回收率≥98%,极压润滑系数达0.05。通过现场2口井的应用试验,应用井段平均井径扩大率为1.71%和4.06%,钻具摩阻40~80 k N,钻井、完井顺利。展开更多
Concerning the issue of mine pressure behaviors occurred in fully mechanized caving mining of thick coal seams beneath hard stratum in Datong Mining Area, combined with thin and thick plate theory, the paper utilizes ...Concerning the issue of mine pressure behaviors occurred in fully mechanized caving mining of thick coal seams beneath hard stratum in Datong Mining Area, combined with thin and thick plate theory, the paper utilizes theoretical analysis, similar experiments, numerical simulations and field tests to study the influence of remaining coal pillars in Jurassic system goaf on hard stratum fractures, as well as mine pressure behaviors under their coupling effects. The paper concludes the solution formula of initial fault displacement in hard stratum caused by remaining coal pillars. Experiments prove that coupling effects can enhance mine pressure behaviors on working faces. When inter-layer inferior key strata fractures, mine pressure phenomenon such as significant roof weighting steps and increasing resistance in support.When inter-layer superior key strata fractures, the scope of overlying strata extends to Jurassic system goaf, dual-system stopes cut through, and remaining coal pillars lose stability. As a result, the bottom inferior key strata also lose stability. It causes huge impacts on working face, and the second mine pressure behaviors. These phenomena provide evidence for research on other similar mine strata pressure behaviors occurred in dual-system mines with remaining coal pillars.展开更多
文摘针对鄂尔多斯靖南地区水平井钻井过程中存在的煤层、碳质泥地层井壁失稳和定向钻井托压问题,开展了钻井液抑制防塌、地层封堵和润滑减阻技术研究,形成了具有良好防塌、润滑能力的钻井液配方,页岩滚动一次回收率≥98%,极压润滑系数达0.05。通过现场2口井的应用试验,应用井段平均井径扩大率为1.71%和4.06%,钻具摩阻40~80 k N,钻井、完井顺利。
基金provided by the National Natural Science Foundation of China(No.51104191)the National Natural Science Foundation of China(No.51374258)the Program for Changjiang Scholars and Innovative Research Team in University of China(No.IRT13043)
文摘Concerning the issue of mine pressure behaviors occurred in fully mechanized caving mining of thick coal seams beneath hard stratum in Datong Mining Area, combined with thin and thick plate theory, the paper utilizes theoretical analysis, similar experiments, numerical simulations and field tests to study the influence of remaining coal pillars in Jurassic system goaf on hard stratum fractures, as well as mine pressure behaviors under their coupling effects. The paper concludes the solution formula of initial fault displacement in hard stratum caused by remaining coal pillars. Experiments prove that coupling effects can enhance mine pressure behaviors on working faces. When inter-layer inferior key strata fractures, mine pressure phenomenon such as significant roof weighting steps and increasing resistance in support.When inter-layer superior key strata fractures, the scope of overlying strata extends to Jurassic system goaf, dual-system stopes cut through, and remaining coal pillars lose stability. As a result, the bottom inferior key strata also lose stability. It causes huge impacts on working face, and the second mine pressure behaviors. These phenomena provide evidence for research on other similar mine strata pressure behaviors occurred in dual-system mines with remaining coal pillars.