In this paper, we investigate the flow of customers through queuing systems with randomly varying intensities. The analysis of the Kolmogorov-Chapman system of stationary equations for this model showed that it is not...In this paper, we investigate the flow of customers through queuing systems with randomly varying intensities. The analysis of the Kolmogorov-Chapman system of stationary equations for this model showed that it is not possible to construct a convenient symbolic solution. In this paper an attempt is made to circumvent this requirement by referring to the ergodicity theorems, which gives the conditions for the existence of the limit distribution in the service processes, but do not require knowledge of them.展开更多
A high-speed and effective packet scheduling method is crucial to the performance of Gigabit routers. The paper studies the variable-length packet scheduling problem in Gigabit router with crossbar switch fabric and i...A high-speed and effective packet scheduling method is crucial to the performance of Gigabit routers. The paper studies the variable-length packet scheduling problem in Gigabit router with crossbar switch fabric and input queuing, and a scheduling method based on neural network is proposed. For the proposed method, a scheduling system structure fit for the variable-length packet case is presented first, then some rules for scheduling are given. At last, an optimal scheduling method using Hopfield neural network is proposed based on the rules. Furthermore, the paper discusses that the proposed method can be realized by hardware circuit. The simulation result shows the effectiveness of the proposed method.展开更多
This letter presents an efficient scheduling algorithm DTRR (Dual-Threshold Round Robin) for input-queued switches. In DTRR, a new matched input and output by round robin in a cell time will be locked by two self-adap...This letter presents an efficient scheduling algorithm DTRR (Dual-Threshold Round Robin) for input-queued switches. In DTRR, a new matched input and output by round robin in a cell time will be locked by two self-adaptive thresholds whenever the queue length or the wait-time of the head cell in the corresponding Virtual Output Queue (VOQ) exceeds the thresholds. The locked input and output will be matched directly in the succeeding cell time until they are unlocked. By employing queue length and wait-time thresholds which are updated every cell time simultane- ously, DTRR achieves a good tradeoff between the performance and hardware complexity. Simula- tion results indicate that the delay performance of DTRR is competitive compared to other typical scheduling algorithms under various traffic patterns especially under diagonal traffic.展开更多
文摘In this paper, we investigate the flow of customers through queuing systems with randomly varying intensities. The analysis of the Kolmogorov-Chapman system of stationary equations for this model showed that it is not possible to construct a convenient symbolic solution. In this paper an attempt is made to circumvent this requirement by referring to the ergodicity theorems, which gives the conditions for the existence of the limit distribution in the service processes, but do not require knowledge of them.
文摘A high-speed and effective packet scheduling method is crucial to the performance of Gigabit routers. The paper studies the variable-length packet scheduling problem in Gigabit router with crossbar switch fabric and input queuing, and a scheduling method based on neural network is proposed. For the proposed method, a scheduling system structure fit for the variable-length packet case is presented first, then some rules for scheduling are given. At last, an optimal scheduling method using Hopfield neural network is proposed based on the rules. Furthermore, the paper discusses that the proposed method can be realized by hardware circuit. The simulation result shows the effectiveness of the proposed method.
基金Supported by the National Natural Science Foundation of China (No.60472057).
文摘This letter presents an efficient scheduling algorithm DTRR (Dual-Threshold Round Robin) for input-queued switches. In DTRR, a new matched input and output by round robin in a cell time will be locked by two self-adaptive thresholds whenever the queue length or the wait-time of the head cell in the corresponding Virtual Output Queue (VOQ) exceeds the thresholds. The locked input and output will be matched directly in the succeeding cell time until they are unlocked. By employing queue length and wait-time thresholds which are updated every cell time simultane- ously, DTRR achieves a good tradeoff between the performance and hardware complexity. Simula- tion results indicate that the delay performance of DTRR is competitive compared to other typical scheduling algorithms under various traffic patterns especially under diagonal traffic.