Nanoparticles have already gained attentions for their countless potential applications in enhanced oil recovery.Nano-sized particles would help to recover trapped oil by several mechanisms including interfacial tensi...Nanoparticles have already gained attentions for their countless potential applications in enhanced oil recovery.Nano-sized particles would help to recover trapped oil by several mechanisms including interfacial tension reduction, impulsive emulsion formation and wettability alteration of porous media. The presence of dispersed nanoparticles in injected fluids would enhance the recovery process through their movement towards oil–water interface. This would cause the interfacial tension to be reduced. In this research, the effects of different types of nanoparticles and different nanoparticle concentrations on EOR processes were investigated. Different flooding experiments were investigated to reveal enhancing oil recovery mechanisms. The results showed that nanoparticles have the ability to reduce the IFT as well as contact angle, making the solid surface to more water wet. As nanoparticle concentration increases more trapped oil was produced mainly due to wettability alteration to water wet and IFT reduction. However, pore blockage was also observed due to adsorption of nanoparticles, a phenomenon which caused the injection pressure to increase. Nonetheless, such higher injection pressure could displace some trapped oil in the small pore channels out of the model. The investigated results gave a clear indication that the EOR potential of nanoparticle fluid is significant.展开更多
Experimental methods,including mercury pressure,nuclear magnetic resonance(NMR)and core(wateroil)displacement,are used to examine the effects of high-multiple water injection(i.e.water injection with high injected por...Experimental methods,including mercury pressure,nuclear magnetic resonance(NMR)and core(wateroil)displacement,are used to examine the effects of high-multiple water injection(i.e.water injection with high injected pore volume)on rock properties,pore structure and oil displacement efficiency of an oilfield in the western South China Sea.The results show an increase in the permeability of rocks along with particle migration,an increase in the pore volume and the average pore throat radius,and enhanced heterogeneity after high-multiple water injection.Compared with normal water injection methods,a high-multiple water injection is more effective in improving the oil displacement efficiency.The degree of recovery increases faster in the early stage due to the expansion of the swept area,and the transition from oil-wet to water-wet.The degree of recovery increases less in the late stage due to various factors,including the enhancement of heterogeneity in the rocks.Considering both the economic aspect and the production limit of water flooding,it is recommended to adopt other technologies to further enhance oil recovery after 300 PV water injection.展开更多
Laboratory measurements using nuclear magnetic resonance,scanning electron microscopy,and gas porosity and permeability analysis were conducted to acquire a petrophysical interpretation of the Carbon Tan Sandstone and...Laboratory measurements using nuclear magnetic resonance,scanning electron microscopy,and gas porosity and permeability analysis were conducted to acquire a petrophysical interpretation of the Carbon Tan Sandstone and Savonnieres Carbonate for potential carbon dioxide storage in subsurface formations.The relationships between pore structures,such as pore-size distribution,pore geometry,and porosity/permeability,were investigated near and far from the wellbore.At operating pressures of 2500psi(17.24 MPa)and temperatures of 176F(50℃),carbonated water was injected into a composite core constructed of two similar core samples bounded by a compact disc located between them.The current results showed that a strong calcite dissolution took place near the injection position of both rock samples and led to improvements in the primary intergranular permeability and porosity,while the carbonate sample showed significant improvement compared to sandstone.The durable heterogeneous dissolution of calcite grains also led to the creation of new pores as intra-granular micro-pores.While at deeper depths from the injection position,it noticed an insignificant development in pore structure and its populations as well as rock hydraulic properties of both rock samples.In conclusion,the study revealed that the injected carbonated brine had a valuable impact on fluid-formation interactive,which improved rock's inlet properties compared with outlet.展开更多
High water-cut has become a worldwide challenge for oil production.It requires extensive efforts to process and dispose.This entails expanding water handling facilities and incurring high power consumption costs.Polym...High water-cut has become a worldwide challenge for oil production.It requires extensive efforts to process and dispose.This entails expanding water handling facilities and incurring high power consumption costs.Polymeric microsphere injection is a cost-effective way to deal with excessive water production from subterranean formations.This study reports a laboratory investigation on polymeric microsphere injection in a large volume to identify its in-depth fluid diversion capacity in a porous media with large pore/particle size ratio.The performance of polymeric microsphere injection was evaluated using etched glass micromodels based on the pore network of a natural carbonate rock,which were treated as water-wet or oil-wet micromodels.Waterflooding was conducted to displace oil at reservoir temperature of 95°C,followed by one pore volume of polymeric microsphere injection.Three polymeric microsphere samples with median particle size of 0.05,0.3,and 20μm were used to investigate the impact of particle size of the polymeric microspheres on incremental oil production capacity.Although the polymeric microspheres were much smaller than the pores,additional oil production was observed.The incremental oil production increased with increasing polymeric microsphere concentration and particle size.As a comparison,polymeric microsphere solutions were injected into oil-wet and water-wet micromodels after waterflooding.It was observed that the oil production in oil-wet micromodel was much higher than that in water-wet micromodel.The wettability of micromodels affected the distribution patterns of the remaining oil after waterflooding and further dominated the performance of the microsphere injection.The study supports the applicability of microsphere injection in oil-wet heterogeneous carbonates.展开更多
The effects on the local skin friction of smooth flat plate by formation of air cavity are investigated experimentally,under the conditions of several variations of air injection angle,pore size,porous surface area an...The effects on the local skin friction of smooth flat plate by formation of air cavity are investigated experimentally,under the conditions of several variations of air injection angle,pore size,porous surface area and transverse step.The experimental results show that local skin friction of downstream of the porous section could be reduced at extent ranging from 50% to 90%,by injection air through pore or slot,with free stream velocities from 2 to 6 m/s.The pore size and area of air injection surface have small effect on skin friction reduction,step has significant effect on skin friction reduction.The mechanism of the skin friction reduction is due to the formation of air cavity,mixed with air and water,between the flat plate and its water boundary layer.展开更多
In this study, the differences in reservoir parameters, such as pore radius, throat radius, and pore-throat ratio, between the east and west subsags of the Lishui Sag are analyzed by using data obtained from a constan...In this study, the differences in reservoir parameters, such as pore radius, throat radius, and pore-throat ratio, between the east and west subsags of the Lishui Sag are analyzed by using data obtained from a constant-rate mercury injection experiment. Furthermore, the quality of the reservoirs in the two subsags is systematically evaluated. Results show that the throat radius of the Lishui west subsag is larger than that of the east subsag, and this parameter has a positive correlation with reservoir quality. However, the pore-throat ratio of the east subsag is larger than that of the west subsag, which has an inverse relationship with reservoir quality. The main reasons for this reservoir difference can be attributed to sedimentation and diagenesis. The sedimentary facies types of the Lishui east subsag are the fan delta, shore lake, shallow lake, and shore shallow lake;their sandstone composition maturity is low;the clay mineral content is high;and the rock has undergone strong diagenesis. Therefore, the physical conditions of the reservoir are poor. However, the sandstones in the Lishui west subsag have weak cementation and compaction, mainly with an intergranular pore structure type, which leads to good connectivity between pores. Therefore, the storage performance and seepage capacity of the Lishui west subsag are better than those of the east subsag;the west subsag is the main area of oil and gas accumulation, as confirmed in the process of exploration and development.展开更多
文摘Nanoparticles have already gained attentions for their countless potential applications in enhanced oil recovery.Nano-sized particles would help to recover trapped oil by several mechanisms including interfacial tension reduction, impulsive emulsion formation and wettability alteration of porous media. The presence of dispersed nanoparticles in injected fluids would enhance the recovery process through their movement towards oil–water interface. This would cause the interfacial tension to be reduced. In this research, the effects of different types of nanoparticles and different nanoparticle concentrations on EOR processes were investigated. Different flooding experiments were investigated to reveal enhancing oil recovery mechanisms. The results showed that nanoparticles have the ability to reduce the IFT as well as contact angle, making the solid surface to more water wet. As nanoparticle concentration increases more trapped oil was produced mainly due to wettability alteration to water wet and IFT reduction. However, pore blockage was also observed due to adsorption of nanoparticles, a phenomenon which caused the injection pressure to increase. Nonetheless, such higher injection pressure could displace some trapped oil in the small pore channels out of the model. The investigated results gave a clear indication that the EOR potential of nanoparticle fluid is significant.
文摘Experimental methods,including mercury pressure,nuclear magnetic resonance(NMR)and core(wateroil)displacement,are used to examine the effects of high-multiple water injection(i.e.water injection with high injected pore volume)on rock properties,pore structure and oil displacement efficiency of an oilfield in the western South China Sea.The results show an increase in the permeability of rocks along with particle migration,an increase in the pore volume and the average pore throat radius,and enhanced heterogeneity after high-multiple water injection.Compared with normal water injection methods,a high-multiple water injection is more effective in improving the oil displacement efficiency.The degree of recovery increases faster in the early stage due to the expansion of the swept area,and the transition from oil-wet to water-wet.The degree of recovery increases less in the late stage due to various factors,including the enhancement of heterogeneity in the rocks.Considering both the economic aspect and the production limit of water flooding,it is recommended to adopt other technologies to further enhance oil recovery after 300 PV water injection.
基金funded by Curtin Malaysia Collaborative Research(CMCR)grant(004022).
文摘Laboratory measurements using nuclear magnetic resonance,scanning electron microscopy,and gas porosity and permeability analysis were conducted to acquire a petrophysical interpretation of the Carbon Tan Sandstone and Savonnieres Carbonate for potential carbon dioxide storage in subsurface formations.The relationships between pore structures,such as pore-size distribution,pore geometry,and porosity/permeability,were investigated near and far from the wellbore.At operating pressures of 2500psi(17.24 MPa)and temperatures of 176F(50℃),carbonated water was injected into a composite core constructed of two similar core samples bounded by a compact disc located between them.The current results showed that a strong calcite dissolution took place near the injection position of both rock samples and led to improvements in the primary intergranular permeability and porosity,while the carbonate sample showed significant improvement compared to sandstone.The durable heterogeneous dissolution of calcite grains also led to the creation of new pores as intra-granular micro-pores.While at deeper depths from the injection position,it noticed an insignificant development in pore structure and its populations as well as rock hydraulic properties of both rock samples.In conclusion,the study revealed that the injected carbonated brine had a valuable impact on fluid-formation interactive,which improved rock's inlet properties compared with outlet.
文摘High water-cut has become a worldwide challenge for oil production.It requires extensive efforts to process and dispose.This entails expanding water handling facilities and incurring high power consumption costs.Polymeric microsphere injection is a cost-effective way to deal with excessive water production from subterranean formations.This study reports a laboratory investigation on polymeric microsphere injection in a large volume to identify its in-depth fluid diversion capacity in a porous media with large pore/particle size ratio.The performance of polymeric microsphere injection was evaluated using etched glass micromodels based on the pore network of a natural carbonate rock,which were treated as water-wet or oil-wet micromodels.Waterflooding was conducted to displace oil at reservoir temperature of 95°C,followed by one pore volume of polymeric microsphere injection.Three polymeric microsphere samples with median particle size of 0.05,0.3,and 20μm were used to investigate the impact of particle size of the polymeric microspheres on incremental oil production capacity.Although the polymeric microspheres were much smaller than the pores,additional oil production was observed.The incremental oil production increased with increasing polymeric microsphere concentration and particle size.As a comparison,polymeric microsphere solutions were injected into oil-wet and water-wet micromodels after waterflooding.It was observed that the oil production in oil-wet micromodel was much higher than that in water-wet micromodel.The wettability of micromodels affected the distribution patterns of the remaining oil after waterflooding and further dominated the performance of the microsphere injection.The study supports the applicability of microsphere injection in oil-wet heterogeneous carbonates.
文摘The effects on the local skin friction of smooth flat plate by formation of air cavity are investigated experimentally,under the conditions of several variations of air injection angle,pore size,porous surface area and transverse step.The experimental results show that local skin friction of downstream of the porous section could be reduced at extent ranging from 50% to 90%,by injection air through pore or slot,with free stream velocities from 2 to 6 m/s.The pore size and area of air injection surface have small effect on skin friction reduction,step has significant effect on skin friction reduction.The mechanism of the skin friction reduction is due to the formation of air cavity,mixed with air and water,between the flat plate and its water boundary layer.
基金supported by the National Natural Science Foundation of China (Nos. 51504143 and 51674156)the SDUST Research Fund (No. 2015DJH101)the Major National R&D Projects of China (No. 2016ZX0 5027-001-006)。
文摘In this study, the differences in reservoir parameters, such as pore radius, throat radius, and pore-throat ratio, between the east and west subsags of the Lishui Sag are analyzed by using data obtained from a constant-rate mercury injection experiment. Furthermore, the quality of the reservoirs in the two subsags is systematically evaluated. Results show that the throat radius of the Lishui west subsag is larger than that of the east subsag, and this parameter has a positive correlation with reservoir quality. However, the pore-throat ratio of the east subsag is larger than that of the west subsag, which has an inverse relationship with reservoir quality. The main reasons for this reservoir difference can be attributed to sedimentation and diagenesis. The sedimentary facies types of the Lishui east subsag are the fan delta, shore lake, shallow lake, and shore shallow lake;their sandstone composition maturity is low;the clay mineral content is high;and the rock has undergone strong diagenesis. Therefore, the physical conditions of the reservoir are poor. However, the sandstones in the Lishui west subsag have weak cementation and compaction, mainly with an intergranular pore structure type, which leads to good connectivity between pores. Therefore, the storage performance and seepage capacity of the Lishui west subsag are better than those of the east subsag;the west subsag is the main area of oil and gas accumulation, as confirmed in the process of exploration and development.