The paper investigates a few of the major areas of the next generation technological advancement,“smart city planning concept”.The areas that the paper focuses are vehicle to grid(V2G),sun to vehicle(S2V),and vehicl...The paper investigates a few of the major areas of the next generation technological advancement,“smart city planning concept”.The areas that the paper focuses are vehicle to grid(V2G),sun to vehicle(S2V),and vehicle to infrastructure(V2I).For the bi-directional crowd energy single entity concept,V2G and building to grid(B2G)are the primary parts of distributed renewable generation(DRG)under smart living.This research includes an in-depth overview of this three major areas.Next,the research conducts a case analysis of V2G,S2V,and V2I along with their possible limitations in order to find out the novel solutions for future development both for academia and industry levels.Lastly,few possible solutions have been proposed to minimize the limitations and to develop the existing system for future expansion.展开更多
Recent advances in wireless communication technologies and auto-mobile industry have triggered a significant research interest in the field of vehicular ad-hoc networks (VANETs) over the past few years. A vehicular ...Recent advances in wireless communication technologies and auto-mobile industry have triggered a significant research interest in the field of vehicular ad-hoc networks (VANETs) over the past few years. A vehicular network consists of vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications supported by wireless access technologies such as IEEE 802.11p. This innovation in wireless communication has been envisaged to improve road safety and motor traffic efficiency in near future through the development of intelligent transportation system (ITS). Hence, governments, auto-mobile industries and academia are heavily partnering through several ongoing research projects to establish standards for VANETs. The typical set of VANET application areas, such as vehicle collision warning and traffic information dissemination have made VANET an interesting field of mobile wireless communication. This paper provides an overview on current research state, challenges, potentials of VANETs as well as the ways forward to achieving the long awaited ITS.展开更多
In seeking to improve traffic congestion and safety on roads and highways,there has been an increased interest in intelligent transportation systems(ITS).The emerging visible light communication(VLC)technology is a ne...In seeking to improve traffic congestion and safety on roads and highways,there has been an increased interest in intelligent transportation systems(ITS).The emerging visible light communication(VLC)technology is a new candidate to enable wireless access in ITS.The purpose of this study is to present a comprehensive review of the current studies related to VLC.Since VLC facilitates illumination and data communication simultaneously,it reduces energy consumption significantly.Additionally,VLC is immune to electromagnetic interference,provides high data security,and utilizes unregulated visible light spectrum,showing promise as a potentially cheaper alternative to existing radio frequency(RF)based technology.Moreover,recent advances in semiconductor materials and solid-state technologies have enabled the development of efficient light-emitting diodes(LEDs)and laser diodes(LDs)which are used as transmitters in a VLC system.Although 10 s of Gbits/s data rate has been demonstrated in indoor VLC links,successful implementation of it in outdoor environments requires further research to overcome the challenges presented by environmental factors,unwanted lights,non-line of sight communication,directional radiation pattern,frequent fragmentation,and so on.Besides,in recent years,semiconductor LDs have been garnering more attention since they can transmit more data over longer distances due to their high quantum efficiency and modulation bandwidth compared to LEDs.As a result,urban planners,policy-makers,transportation engineers,and vehicle manufacturers are considering LD-based VLC to facilitate vehicle-to-vehicle and vehicle-to-infrastructure communication.Thus,this paper reviews and compares the most recent developments in VLC technologies,identifies their benefits and potential use in ITS applications,discusses the probable barriers for their implementation in our existing transportation infrastructure,and suggests future research directions and recommendations to overcome these challenges.展开更多
This paper proposes a single integrated traffic enforcement system that is able to recognize and report various traffic violations. It consists of a Wi-Fi infrastructure that enables communication between moving vehic...This paper proposes a single integrated traffic enforcement system that is able to recognize and report various traffic violations. It consists of a Wi-Fi infrastructure that enables communication between moving vehicles and a central node. Unlike existing solutions, which address single violations, the proposed model encompasses several issues like exceeding speed limits, entering a no entry street, car theft, congestion and tolling. OPNET simulations were run to test the Wi-Fi model and define its different characteristics and limitations. A proof-of-concept case was modeled, and the proposed architecture succeeded in meeting all design requirements.展开更多
A smartphone warning system is a feasible option to notify motorists about a safety threat and/or pedestrian crossings ahead. In this paper, a smartphone-based warning system was proposed to enhance workers’ safety i...A smartphone warning system is a feasible option to notify motorists about a safety threat and/or pedestrian crossings ahead. In this paper, a smartphone-based warning system was proposed to enhance workers’ safety in work zones. Three different warning message systems, including sound, male voice and female voice, were designed to alert drivers. Twenty-four subjects were recruited for a total of ninety-six rounds driving simulator test in a work zone to investigate the impacts of smartphone-based warning messages on subjects’ driving performance, in terms of driving speed, speed variation, acceleration, and brake reaction distance. The outcome showed that, with the assistance of the sound and voice (either female or male) warning messages, drivers could effectively reduce their accelerations and speeds. Meanwhile, such a warning system can induce subjects to shorten their brake reaction distances for worker crossings. All participants found that this warning system is applicable to enhance their defensive driving behaviors while driving through a work zone.展开更多
There is a significant increase in the rates of vehicle accidents in countries around the world and also the casualties involved ever year. New technologies have been explored relating to the Vehicular Ad Hoc Network ...There is a significant increase in the rates of vehicle accidents in countries around the world and also the casualties involved ever year. New technologies have been explored relating to the Vehicular Ad Hoc Network (VANET) due to the increase in vehicular traffic/congestions around us. Vehicular communication is very important as technology has evolved. The research of VANET and development of proposed systems and implementation would increase safety among road users and improve the comfort for the corresponding passengers, drivers and also other road users, and a great improvement in the traffic efficiency would be achieved. This research paper investigates the current and existing security issues associated with the VANET and exposes any slack amongst them in order to lighten possible problem domains in this field.展开更多
Driven by the rapid growth in information services provided by the Internet and the appearance of new multimedia applications,millimeter wave is foreseen as a key enabler towards the Internet of intelligent vehicles(I...Driven by the rapid growth in information services provided by the Internet and the appearance of new multimedia applications,millimeter wave is foreseen as a key enabler towards the Internet of intelligent vehicles(IoIV)for urban traffic safety enhancement.In this regard,cluster-based channel modeling has become an important research topic in the realm of emergency communications.To fully understand the cluster-based channel model,a series of vehicle-to-infrastructure(V2I)channel simulations at 22.6 GHz are conducted by a three-dimensional ray tracing(RT)simulator.The clustering and tracking algorithm is proposed and analyzed from three aspects by the obtained simulation results.The multiple signal classification estimation spectrum is applied to restrain the influence of antenna sidelobes and identify targets at first.Based on the fundamentals,the clusters can be identified and subsequently tracked using the proposed approach.The impacts of antenna sidelobes,angle resolution of beam rotation,and non-line-of-sight propagation path on the performance of clustering and tracking are evaluated.The multi-component-level RT results are adopted as comparison benchmarks,which reflect the ground truth.This work aims to provide a full picture of the clustering characteristics for designing and analyzing emergency communication systems.展开更多
文摘The paper investigates a few of the major areas of the next generation technological advancement,“smart city planning concept”.The areas that the paper focuses are vehicle to grid(V2G),sun to vehicle(S2V),and vehicle to infrastructure(V2I).For the bi-directional crowd energy single entity concept,V2G and building to grid(B2G)are the primary parts of distributed renewable generation(DRG)under smart living.This research includes an in-depth overview of this three major areas.Next,the research conducts a case analysis of V2G,S2V,and V2I along with their possible limitations in order to find out the novel solutions for future development both for academia and industry levels.Lastly,few possible solutions have been proposed to minimize the limitations and to develop the existing system for future expansion.
基金supported by a Grant-in-Aid for Scientific Research from Ebonyi State Government(EBSG)(No.EBSG/SSB/PS/VII/105)
文摘Recent advances in wireless communication technologies and auto-mobile industry have triggered a significant research interest in the field of vehicular ad-hoc networks (VANETs) over the past few years. A vehicular network consists of vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications supported by wireless access technologies such as IEEE 802.11p. This innovation in wireless communication has been envisaged to improve road safety and motor traffic efficiency in near future through the development of intelligent transportation system (ITS). Hence, governments, auto-mobile industries and academia are heavily partnering through several ongoing research projects to establish standards for VANETs. The typical set of VANET application areas, such as vehicle collision warning and traffic information dissemination have made VANET an interesting field of mobile wireless communication. This paper provides an overview on current research state, challenges, potentials of VANETs as well as the ways forward to achieving the long awaited ITS.
文摘In seeking to improve traffic congestion and safety on roads and highways,there has been an increased interest in intelligent transportation systems(ITS).The emerging visible light communication(VLC)technology is a new candidate to enable wireless access in ITS.The purpose of this study is to present a comprehensive review of the current studies related to VLC.Since VLC facilitates illumination and data communication simultaneously,it reduces energy consumption significantly.Additionally,VLC is immune to electromagnetic interference,provides high data security,and utilizes unregulated visible light spectrum,showing promise as a potentially cheaper alternative to existing radio frequency(RF)based technology.Moreover,recent advances in semiconductor materials and solid-state technologies have enabled the development of efficient light-emitting diodes(LEDs)and laser diodes(LDs)which are used as transmitters in a VLC system.Although 10 s of Gbits/s data rate has been demonstrated in indoor VLC links,successful implementation of it in outdoor environments requires further research to overcome the challenges presented by environmental factors,unwanted lights,non-line of sight communication,directional radiation pattern,frequent fragmentation,and so on.Besides,in recent years,semiconductor LDs have been garnering more attention since they can transmit more data over longer distances due to their high quantum efficiency and modulation bandwidth compared to LEDs.As a result,urban planners,policy-makers,transportation engineers,and vehicle manufacturers are considering LD-based VLC to facilitate vehicle-to-vehicle and vehicle-to-infrastructure communication.Thus,this paper reviews and compares the most recent developments in VLC technologies,identifies their benefits and potential use in ITS applications,discusses the probable barriers for their implementation in our existing transportation infrastructure,and suggests future research directions and recommendations to overcome these challenges.
文摘This paper proposes a single integrated traffic enforcement system that is able to recognize and report various traffic violations. It consists of a Wi-Fi infrastructure that enables communication between moving vehicles and a central node. Unlike existing solutions, which address single violations, the proposed model encompasses several issues like exceeding speed limits, entering a no entry street, car theft, congestion and tolling. OPNET simulations were run to test the Wi-Fi model and define its different characteristics and limitations. A proof-of-concept case was modeled, and the proposed architecture succeeded in meeting all design requirements.
文摘A smartphone warning system is a feasible option to notify motorists about a safety threat and/or pedestrian crossings ahead. In this paper, a smartphone-based warning system was proposed to enhance workers’ safety in work zones. Three different warning message systems, including sound, male voice and female voice, were designed to alert drivers. Twenty-four subjects were recruited for a total of ninety-six rounds driving simulator test in a work zone to investigate the impacts of smartphone-based warning messages on subjects’ driving performance, in terms of driving speed, speed variation, acceleration, and brake reaction distance. The outcome showed that, with the assistance of the sound and voice (either female or male) warning messages, drivers could effectively reduce their accelerations and speeds. Meanwhile, such a warning system can induce subjects to shorten their brake reaction distances for worker crossings. All participants found that this warning system is applicable to enhance their defensive driving behaviors while driving through a work zone.
文摘There is a significant increase in the rates of vehicle accidents in countries around the world and also the casualties involved ever year. New technologies have been explored relating to the Vehicular Ad Hoc Network (VANET) due to the increase in vehicular traffic/congestions around us. Vehicular communication is very important as technology has evolved. The research of VANET and development of proposed systems and implementation would increase safety among road users and improve the comfort for the corresponding passengers, drivers and also other road users, and a great improvement in the traffic efficiency would be achieved. This research paper investigates the current and existing security issues associated with the VANET and exposes any slack amongst them in order to lighten possible problem domains in this field.
基金This work was supported in part by Institute of Information&Communications Technology Planning&Evaluation(IITP)grant funded by the Korea government(MSIT)(No.2018-0-00792,QoE improvement of open Wi-Fi on public transportation for the reduction of communication expense)in part by IITP grant funded by the Korea government(MSIT)(No.2018-0-001755G Agile and flexible integration of satellite and cellular).
文摘Driven by the rapid growth in information services provided by the Internet and the appearance of new multimedia applications,millimeter wave is foreseen as a key enabler towards the Internet of intelligent vehicles(IoIV)for urban traffic safety enhancement.In this regard,cluster-based channel modeling has become an important research topic in the realm of emergency communications.To fully understand the cluster-based channel model,a series of vehicle-to-infrastructure(V2I)channel simulations at 22.6 GHz are conducted by a three-dimensional ray tracing(RT)simulator.The clustering and tracking algorithm is proposed and analyzed from three aspects by the obtained simulation results.The multiple signal classification estimation spectrum is applied to restrain the influence of antenna sidelobes and identify targets at first.Based on the fundamentals,the clusters can be identified and subsequently tracked using the proposed approach.The impacts of antenna sidelobes,angle resolution of beam rotation,and non-line-of-sight propagation path on the performance of clustering and tracking are evaluated.The multi-component-level RT results are adopted as comparison benchmarks,which reflect the ground truth.This work aims to provide a full picture of the clustering characteristics for designing and analyzing emergency communication systems.