Materials informatics is a cross discipline combining materials science and information science. The concept of materials informatics was introduced and expounded. The current status of research and application of mat...Materials informatics is a cross discipline combining materials science and information science. The concept of materials informatics was introduced and expounded. The current status of research and application of materials informatics was analyzed. And the main tasks and research areas of materials informatics were summarized. Then the foundation and significance of its development in China was discussed. Lastly the development vision of materials informatics was proposed.展开更多
Diabetes is a metabolic disorder that results in a retinal complication called diabetic retinopathy(DR)which is one of the four main reasons for sightlessness all over the globe.DR usually has no clear symptoms before...Diabetes is a metabolic disorder that results in a retinal complication called diabetic retinopathy(DR)which is one of the four main reasons for sightlessness all over the globe.DR usually has no clear symptoms before the onset,thus making disease identication a challenging task.The healthcare industry may face unfavorable consequences if the gap in identifying DR is not lled with effective automation.Thus,our objective is to develop an automatic and cost-effective method for classifying DR samples.In this work,we present a custom Faster-RCNN technique for the recognition and classication of DR lesions from retinal images.After pre-processing,we generate the annotations of the dataset which is required for model training.Then,introduce DenseNet-65 at the feature extraction level of Faster-RCNN to compute the representative set of key points.Finally,the Faster-RCNN localizes and classies the input sample into ve classes.Rigorous experiments performed on a Kaggle dataset comprising of 88,704 images show that the introduced methodology outperforms with an accuracy of 97.2%.We have compared our technique with state-of-the-art approaches to show its robustness in term of DR localization and classication.Additionally,we performed cross-dataset validation on the Kaggle and APTOS datasets and achieved remarkable results on both training and testing phases.展开更多
文摘Materials informatics is a cross discipline combining materials science and information science. The concept of materials informatics was introduced and expounded. The current status of research and application of materials informatics was analyzed. And the main tasks and research areas of materials informatics were summarized. Then the foundation and significance of its development in China was discussed. Lastly the development vision of materials informatics was proposed.
文摘Diabetes is a metabolic disorder that results in a retinal complication called diabetic retinopathy(DR)which is one of the four main reasons for sightlessness all over the globe.DR usually has no clear symptoms before the onset,thus making disease identication a challenging task.The healthcare industry may face unfavorable consequences if the gap in identifying DR is not lled with effective automation.Thus,our objective is to develop an automatic and cost-effective method for classifying DR samples.In this work,we present a custom Faster-RCNN technique for the recognition and classication of DR lesions from retinal images.After pre-processing,we generate the annotations of the dataset which is required for model training.Then,introduce DenseNet-65 at the feature extraction level of Faster-RCNN to compute the representative set of key points.Finally,the Faster-RCNN localizes and classies the input sample into ve classes.Rigorous experiments performed on a Kaggle dataset comprising of 88,704 images show that the introduced methodology outperforms with an accuracy of 97.2%.We have compared our technique with state-of-the-art approaches to show its robustness in term of DR localization and classication.Additionally,we performed cross-dataset validation on the Kaggle and APTOS datasets and achieved remarkable results on both training and testing phases.