期刊文献+
共找到22篇文章
< 1 2 >
每页显示 20 50 100
基于贝叶斯Logistic回归的软件缺陷预测研究 被引量:6
1
作者 赖永凯 陈向宇 刘海 《计算机工程与应用》 CSCD 北大核心 2019年第11期204-208,220,共6页
在软件开发初期及时识别出软件存在的缺陷,可以帮助项目管理团队及时优化开发测试资源分配,以便对可能含有缺陷的软件进行严格的质量保证活动,这对于软件的高质量交付有着重要的作用,因此,软件缺陷预测成为软件工程领域内一个研究热点... 在软件开发初期及时识别出软件存在的缺陷,可以帮助项目管理团队及时优化开发测试资源分配,以便对可能含有缺陷的软件进行严格的质量保证活动,这对于软件的高质量交付有着重要的作用,因此,软件缺陷预测成为软件工程领域内一个研究热点。虽然人们已经使用多种机器学习算法建立了缺陷预测模型,但还没有对这些模型的贝叶斯方法进行研究。提出了无信息先验和信息先验的贝叶斯Logistic回归方法来建立缺陷预测模型,并对贝叶斯Logistic回归的优势以及先验信息在贝叶斯Logistic回归中的作用进行了研究。最后,在PROMISE数据集上与其他已有缺陷预测方法(LR、NB、RF、SVM)进行了比较研究,结果表明:贝叶斯Logistic回归方法可以取得很好的预测性能。 展开更多
关键词 缺陷预测 贝叶斯Logistic回归 信息先验
下载PDF
Foodweb Trophic Level and Diet Inference Using an Extended Bayesian Stable Isotope Mixing Model
2
作者 Erik Barry Erhardt Rachel Marie Wilson 《Open Journal of Ecology》 2022年第6期333-359,共27页
You are what you eat (diet) and where you eat (trophic level) in the food web. The relative abundance of pairs of stable isotopes of the organic elements carbon (e.g., the isotope ratio of <sup>13</sup>C v... You are what you eat (diet) and where you eat (trophic level) in the food web. The relative abundance of pairs of stable isotopes of the organic elements carbon (e.g., the isotope ratio of <sup>13</sup>C vs<sup> 12</sup>C), nitrogen, and sulfur, among others, in the tissues of a consumer reflects a weighted-average of the isotope ratios in the sources it consumes, after some corrections for the processes of digestion and assimilation. We extended a Bayesian mixing model to infer trophic positions of consumer organisms in a food web in addition to the degree to which distinct resource pools (diet sources) support consumers. The novel features in this work include: 1) trophic level estimation (vertical position in foodweb) and 2) the Bayesian exposition of a biologically realistic model [1] including stable isotope ratios and concentrations of carbon, nitrogen, and sulfur, isotopic fractionations, elemental assimilation efficiencies, as well as extensive use of prior information. We discuss issues of parameter identifiability in the complex and most realistic model. We apply our model to simulated data and to bottlenose dolphins (Tursiops truncatus) feeding on several numerically abundant fish species, which in turn feed on other fish and primary producing plants and algae present in St. George Sound, FL, USA. Finally, we discuss extensions from other work that apply to this model and three important general ecological applications. Online supplementary materials include data, OpenBUGS scripts, and simulation details. 展开更多
关键词 Stable Isotope Animal Ecology Trophic Level Animal Diet informative priors
下载PDF
Bayesian Analysis of the Behrens-Fisher Problem under a Gamma Prior
3
作者 Nengak Emmanuel Goltong Sani Ibrahim Doguwa 《Open Journal of Statistics》 2018年第6期902-914,共13页
Yin [1] has developed a new Bayesian measure of evidence for testing a point null hypothesis which agrees with the frequentist p-value thereby, solving Lindley’s paradox. Yin and Li [2] extended the methodology of Yi... Yin [1] has developed a new Bayesian measure of evidence for testing a point null hypothesis which agrees with the frequentist p-value thereby, solving Lindley’s paradox. Yin and Li [2] extended the methodology of Yin [1] to the case of the Behrens-Fisher problem by assigning Jeffreys’ independent prior to the nuisance parameters. In this paper, we were able to show both analytically and through the results from simulation studies that the methodology of Yin?[1] solves simultaneously, the Behrens-Fisher problem and Lindley’s paradox when a Gamma prior is assigned to the nuisance parameters. 展开更多
关键词 Behrens-Fisher PROBLEM Lindley’s PARADOX METROPOLIS-HASTINGS Algorithm informative priors
下载PDF
Tunable structure priors for Bayesian rule learning for knowledge integrated biomarker discovery
4
作者 Jeya Balaji Balasubramanian Vanathi Gopalakrishnan 《World Journal of Clinical Oncology》 CAS 2018年第5期98-109,共12页
AIM To develop a framework to incorporate background domain knowledge into classification rule learning for knowledge discovery in biomedicine.METHODS Bayesian rule learning(BRL) is a rule-based classifier that uses a... AIM To develop a framework to incorporate background domain knowledge into classification rule learning for knowledge discovery in biomedicine.METHODS Bayesian rule learning(BRL) is a rule-based classifier that uses a greedy best-first search over a space of Bayesian belief-networks(BN) to find the optimal BN to explain the input dataset, and then infers classification rules from this BN. BRL uses a Bayesian score to evaluate the quality of BNs. In this paper, we extended the Bayesian score to include informative structure priors, which encodes our prior domain knowledge about the dataset. We call this extension of BRL as BRL_p. The structure prior has a λ hyperparameter that allows the user to tune the degree of incorporation of the prior knowledge in the model learning process. We studied the effect of λ on model learning using a simulated dataset and a real-world lung cancer prognostic biomarker dataset, by measuring the degree of incorporation of our specified prior knowledge. We also monitored its effect on the model predictive performance. Finally, we compared BRL_p to other stateof-the-art classifiers commonly used in biomedicine.RESULTS We evaluated the degree of incorporation of prior knowledge into BRL_p, with simulated data by measuring the Graph Edit Distance between the true datagenerating model and the model learned by BRL_p. We specified the true model using informative structurepriors. We observed that by increasing the value of λ we were able to increase the influence of the specified structure priors on model learning. A large value of λ of BRL_p caused it to return the true model. This also led to a gain in predictive performance measured by area under the receiver operator characteristic curve(AUC). We then obtained a publicly available real-world lung cancer prognostic biomarker dataset and specified a known biomarker from literature [the epidermal growth factor receptor(EGFR) gene]. We again observed that larger values of λ led to an increased incorporation of EGFR into the final BRL_p 展开更多
关键词 Supervised machine learning RULE-BASED models BAYESIAN methods Background KNOWLEDGE informative priors BIOMARKER discovery
下载PDF
One-Sample Bayesian Predictive Analyses for a Nonhomogeneous Poisson Process with Delayed S-Shaped Intensity Function Using Non-Informative Priors
5
作者 Otieno Collins Orawo Luke Akong’o Matiri George Munene 《Open Journal of Statistics》 2023年第5期717-733,共17页
The delayed S-shaped software reliability growth model (SRGM) is one of the non-homogeneous Poisson process (NHPP) models which have been proposed for software reliability assessment. The model is distinctive because ... The delayed S-shaped software reliability growth model (SRGM) is one of the non-homogeneous Poisson process (NHPP) models which have been proposed for software reliability assessment. The model is distinctive because it has a mean value function that reflects the delay in failure reporting: there is a delay between failure detection and reporting time. The model captures error detection, isolation, and removal processes, thus is appropriate for software reliability analysis. Predictive analysis in software testing is useful in modifying, debugging, and determining when to terminate software development testing processes. However, Bayesian predictive analyses on the delayed S-shaped model have not been extensively explored. This paper uses the delayed S-shaped SRGM to address four issues in one-sample prediction associated with the software development testing process. Bayesian approach based on non-informative priors was used to derive explicit solutions for the four issues, and the developed methodologies were illustrated using real data. 展开更多
关键词 Failure Intensity Non-informative priors Software Reliability Model Bayesian Approach Non-Homogeneous Poisson Process
下载PDF
One-Sample Bayesian Predictive Analyses for an Exponential Non-Homogeneous Poisson Process in Software Reliability 被引量:1
6
作者 Albert Orwa Akuno Luke Akong’o Orawo Ali Salim Islam 《Open Journal of Statistics》 2014年第5期402-411,共10页
The Goel-Okumoto software reliability model, also known as the Exponential Nonhomogeneous Poisson Process,is one of the earliest software reliability models to be proposed. From literature, it is evident that most of ... The Goel-Okumoto software reliability model, also known as the Exponential Nonhomogeneous Poisson Process,is one of the earliest software reliability models to be proposed. From literature, it is evident that most of the study that has been done on the Goel-Okumoto software reliability model is parameter estimation using the MLE method and model fit. It is widely known that predictive analysis is very useful for modifying, debugging and determining when to terminate software development testing process. However, there is a conspicuous absence of literature on both the classical and Bayesian predictive analyses on the model. This paper presents some results about predictive analyses for the Goel-Okumoto software reliability model. Driven by the requirement of highly reliable software used in computers embedded in automotive, mechanical and safety control systems, industrial and quality process control, real-time sensor networks, aircrafts, nuclear reactors among others, we address four issues in single-sample prediction associated closely with software development process. We have adopted Bayesian methods based on non-informative priors to develop explicit solutions to these problems. An example with real data in the form of time between software failures will be used to illustrate the developed methodologies. 展开更多
关键词 NONHOMOGENEOUS POISSON Process Non-informative priors Software Reliability Models BAYESIAN Approach
下载PDF
Two-Sample Bayesian Predictive Analyses for an Exponential Non-Homogeneous Poisson Process in Software Reliability
7
作者 Albert Orwa Akuno Luke Akong’o Orawo Ali Salim Islam 《Open Journal of Statistics》 2014年第9期742-750,共9页
The Goel-Okumoto software reliability model is one of the earliest attempts to use a non-homogeneous Poisson process to model failure times observed during software test interval. The model is known as exponential NHP... The Goel-Okumoto software reliability model is one of the earliest attempts to use a non-homogeneous Poisson process to model failure times observed during software test interval. The model is known as exponential NHPP model as it describes exponential software failure curve. Parameter estimation, model fit and predictive analyses based on one sample have been conducted on the Goel-Okumoto software reliability model. However, predictive analyses based on two samples have not been conducted on the model. In two-sample prediction, the parameters and characteristics of the first sample are used to analyze and to make predictions for the second sample. This helps in saving time and resources during the software development process. This paper presents some results about predictive analyses for the Goel-Okumoto software reliability model based on two samples. We have addressed three issues in two-sample prediction associated closely with software development testing process. Bayesian methods based on non-informative priors have been adopted to develop solutions to these issues. The developed methodologies have been illustrated by two sets of software failure data simulated from the Goel-Okumoto software reliability model. 展开更多
关键词 NONHOMOGENEOUS POISSON Process Software Reliability Models Non-informative priors BAYESIAN Approach
下载PDF
基于贝叶斯法估计杉木人工林树高生长模型 被引量:42
8
作者 张雄清 张建国 段爱国 《林业科学》 EI CAS CSCD 北大核心 2014年第3期69-75,共7页
以江西杉木密度试验林为例,分别基于贝叶斯法和传统法(非线性最小二乘法)估计杉木人工林树高生长模型,并在贝叶斯法中考虑无信息先验分布和有信息先验分布。结果表明:利用贝叶斯法估计杉木人工林树高生长模型,预测值的可靠性比传统法好... 以江西杉木密度试验林为例,分别基于贝叶斯法和传统法(非线性最小二乘法)估计杉木人工林树高生长模型,并在贝叶斯法中考虑无信息先验分布和有信息先验分布。结果表明:利用贝叶斯法估计杉木人工林树高生长模型,预测值的可靠性比传统法好,而且基于有信息先验分布估计杉木人工林树高生长模型要略好于无信息先验分布。这是因为利用生长模型预测杉木人工林树高生长存在着一定的不确定性,使得利用传统的估计方法分析杉木人工林生长模型稳定性比较低,可靠性也相对较差。贝叶斯法综合利用了先验信息和样本信息,而传统法仅利用了样本信息,而且贝叶斯法把模型参数看作是随机变量,更能反映杉木人工林树高生长的本质,预测杉木人工林树高的可靠性更好,而传统法把模型参数看作固定值。研究结果为杉木人工林生长模型的估计提供一种新的思路。 展开更多
关键词 贝叶斯法 有信息先验分布 无信息先验分布 树高生长 杉木人工林
下载PDF
Behrens-Fisher问题的信赖与贝叶斯精确区间估计 被引量:1
9
作者 周源泉 李宝盛 《中国空间科学技术》 EI CSCD 北大核心 2007年第4期53-56,65,共5页
两正态总体均值与标准差均未知时的均值差的区间估计问题,称为Behrens-Fisher问题。给出了问题的共轭型先验与无信息先验下的Bayes精确区间估计及其计算方法,并指出可信水平为γ时无信息先验的Bayes精确区间估计与Fisher的Fiducial水平... 两正态总体均值与标准差均未知时的均值差的区间估计问题,称为Behrens-Fisher问题。给出了问题的共轭型先验与无信息先验下的Bayes精确区间估计及其计算方法,并指出可信水平为γ时无信息先验的Bayes精确区间估计与Fisher的Fiducial水平为γ的Fiducial精确区间估计在数值上一致。将Welch&Aspin近似与无信息先验的Bayes精确区间估计作比较,结果显示此近似一般偏冒进,故对重要的工程问题建议使用Bayes(或Fiducial)精确区间估计。 展开更多
关键词 Behrens-Fisher问题 Bayes限 共轭型先验 无信息先验 Fiducial限
下载PDF
网络Meta分析研究进展系列(十九):基于外部证据确立贝叶斯网络Meta分析异质性的先验信息
10
作者 董圣杰 张天嵩 +3 位作者 武珊珊 杨智荣 田金徽 孙凤 《中国循证心血管医学杂志》 2021年第12期1409-1412,共4页
本文围绕医学研究证据整合领域异质性问题,介绍了异质性先验分布类型、使用外部证据确立异质性先验信息的普适的经验,进一步聚焦于异质性的方差-协方差矩阵讲述了异质性估计常用的四种模型。期望帮助读者掌握如何使用外部经验数据作为... 本文围绕医学研究证据整合领域异质性问题,介绍了异质性先验分布类型、使用外部证据确立异质性先验信息的普适的经验,进一步聚焦于异质性的方差-协方差矩阵讲述了异质性估计常用的四种模型。期望帮助读者掌握如何使用外部经验数据作为异质性方差的先验信息,得到更稳健的网络Meta分析估计。 展开更多
关键词 贝叶斯网络Meta分析 异质性 外部证据 先验信息 有信息先验
下载PDF
基于Kumaraswamy分布多部件应力-强度模型统计推断
11
作者 何飞 蔡静 +1 位作者 何剑 韩荣 《湖北民族大学学报(自然科学版)》 CAS 2024年第3期435-441,共7页
为研究串联系统下多部件应力-强度模型的可靠性问题,基于Kumaraswamy分布,采用极大似然法给出参数及应力-强度模型可靠度的极大似然估计(maximum likelihood estimation,MLE);再利用Jeffreys准则构造无信息先验分布,运用马尔可夫链蒙特... 为研究串联系统下多部件应力-强度模型的可靠性问题,基于Kumaraswamy分布,采用极大似然法给出参数及应力-强度模型可靠度的极大似然估计(maximum likelihood estimation,MLE);再利用Jeffreys准则构造无信息先验分布,运用马尔可夫链蒙特卡洛(Markov chain Monte Carlo,MCMC)方法给出参数及应力-强度模型可靠度的贝叶斯估计;最后,利用逆矩估计方法给出参数及应力-强度模型可靠度的逆矩估计(inverse moment estimation,IME)。数值模拟结果表明,在不同系统可靠度及不同样本量条件下,通过对3种估计方法的数值进行比较发现贝叶斯估计效果最好,IME优于MLE。该研究为探讨串联系统多部件应力-强度模型可靠性提供了一定的理论基础。 展开更多
关键词 Kumaraswamy分布 多部件应力-强度模型 无信息先验 逆矩估计 串联系统 MH算法
下载PDF
基于差分进化算法的正态分布均值变点检测 被引量:1
12
作者 朱伟业成 金良琼 沈婷 《科技创新与应用》 2023年第2期25-31,共7页
变点是指从某个时刻开始,样本的分布或数字特征发生变化。该文研究已知变点个数条件下的正态分布序列均值变点位置的检测问题。根据贝叶斯理论,对变点参数和均值参数取无信息先验分布,得到变点位置的后验分布,为计算后验分布,应用差分... 变点是指从某个时刻开始,样本的分布或数字特征发生变化。该文研究已知变点个数条件下的正态分布序列均值变点位置的检测问题。根据贝叶斯理论,对变点参数和均值参数取无信息先验分布,得到变点位置的后验分布,为计算后验分布,应用差分进化算法(DE)和自适应差分进化算法(ADE)对后验分布进行研究,并进行数值模拟。实验结果表明,2种算法均能够快速有效地估计正态分布序列中均值变点的位置。其中,差分进化算法的估计效果较自适应差分进化算法更好。 展开更多
关键词 正态分布 无信息先验 变点 差分进化算法 贝叶斯方法
下载PDF
贝叶斯原理的不确定度评定方法比较 被引量:2
13
作者 姜瑞 陈晓怀 《河南科技大学学报(自然科学版)》 CAS 北大核心 2016年第6期21-27,5,共7页
针对仅依据测量样本信息进行不确定度评定的局限性,利用贝叶斯信息融合原理,分别研究了基于无信息先验、共轭先验和最大熵先验分布的测量不确定度评定与更新方法,使评定过程充分融合历史先验信息和当前样本信息,提高了测量不确定度评定... 针对仅依据测量样本信息进行不确定度评定的局限性,利用贝叶斯信息融合原理,分别研究了基于无信息先验、共轭先验和最大熵先验分布的测量不确定度评定与更新方法,使评定过程充分融合历史先验信息和当前样本信息,提高了测量不确定度评定的可靠性。仿真实例表明:无信息先验方法没有将各组测量数据融合,其仿真结果波动最大;共轭先验方法仿真结果波动较大,经过多次数据融合逐渐趋于理论值;最大熵先验方法仿真结果波动较小,经过数据融合逐渐趋近于理论值。 展开更多
关键词 不确定度评定 贝叶斯原理 无信息先验 共轭先验 最大熵先验
下载PDF
方差已知条件下平稳AR模型的贝叶斯分析
14
作者 傅霞 吕伟 郑春华 《河南科学》 2017年第5期689-695,共7页
当方差已知时,分别对无信息先验和共轭先验条件下的平稳AR(p)模型进行了贝叶斯分析,并给出了平稳AR(1)模型回归系数的贝叶斯估计和预报分布的解析式.结果表明,两种先验分布下,回归系数的后验分布均服从平稳域内的截断正态分布.无信息先... 当方差已知时,分别对无信息先验和共轭先验条件下的平稳AR(p)模型进行了贝叶斯分析,并给出了平稳AR(1)模型回归系数的贝叶斯估计和预报分布的解析式.结果表明,两种先验分布下,回归系数的后验分布均服从平稳域内的截断正态分布.无信息先验分布下,后验均值与经典OLS估计值一致;在共轭先验分布下,后验均值是先验均值和经典OLS估计值的加权平均. 展开更多
关键词 AR模型 贝叶斯分析 无信息先验 共轭先验 后验分布 预报分布
下载PDF
一种基于无信息先验下泊松分布变点的贝叶斯估计
15
作者 许婷 吴有富 张英雪 《遵义师范学院学报》 2022年第5期94-99,共6页
文章在Zhang等人讨论的确定无信息先验分布方法的基础上,基于“变换不变性”原则推导出了Poisson分布参数的无信息先验分布,并以此研究了Poisson分布尺度参数变点模型的参数估计问题,结合Poisson分布的单变点模型,分别利用极大似然方法... 文章在Zhang等人讨论的确定无信息先验分布方法的基础上,基于“变换不变性”原则推导出了Poisson分布参数的无信息先验分布,并以此研究了Poisson分布尺度参数变点模型的参数估计问题,结合Poisson分布的单变点模型,分别利用极大似然方法和贝叶斯方法进行研究,并使用R软件进行仿真模拟,模拟的结果表明,相比于极大似然方法,贝叶斯方法的估计值更加接近于真实值。并将此方法应用于英国煤灾事故数据集,实证分析的结果与前人研究的结果是基本一致的,证明用此先验分布对泊松分布变点问题进行研究是可行且精度较高的。 展开更多
关键词 POISSON分布 无信息先验分布 变点 贝叶斯方法 极大似然方法
下载PDF
污染数据回归分析的贝叶斯区间估计
16
作者 施露芳 刘次华 孟晓华 《应用数学》 CSCD 北大核心 2006年第S1期212-216,共5页
本文研究简单回归模型中响应变量受到另一随机变量序列污染时,模型参数和污染系数的估计方法.利用贝叶斯统计原理,给出了污染系数的后验置信区间及模型参数估计.
关键词 无信息先验分布 共轭先验分布 贝叶斯区间估计 污染数据 ε-代换类
下载PDF
污染数据线性回归模型的贝叶斯估计
17
作者 施露芳 杨姣仕 《黄冈师范学院学报》 2010年第3期91-94,共4页
本文研究线性回归模型中响应变量受到另一随机变量序列污染时,模型参数和污染系数的估计问题.利用贝叶斯统计原理,给出了污染系数的贝叶斯区间估计及模型参数估计.
关键词 污染数据 无信息先验分布 共轭先验分布 代换类 贝叶斯区间估计
下载PDF
两部件冷备系统可靠度的Bayes估计
18
作者 李玲 鲍志晖 《巢湖学院学报》 2019年第3期23-27,共5页
研究给出了两部件冷备系统可靠度的Bayes估计,在此基础上针对超参数的先验分布分别讨论了Bayes假设和Jeffreys先验两种无信息先验的情形,进而给出相应的系统可靠度的多层Bayes估计。通过数例分析对冷备系统可靠度的Bayes估计及两种超参... 研究给出了两部件冷备系统可靠度的Bayes估计,在此基础上针对超参数的先验分布分别讨论了Bayes假设和Jeffreys先验两种无信息先验的情形,进而给出相应的系统可靠度的多层Bayes估计。通过数例分析对冷备系统可靠度的Bayes估计及两种超参数先验分布下的多层Bayes估计的精度进行了比较,并且说明了多层Bayes估计的合理性。 展开更多
关键词 两部件 冷备系统 BAYES估计 多层BAYES估计 无信息先验
下载PDF
无信息先验下平稳AR(1)模型的贝叶斯推断
19
作者 傅霞 吕伟 赵景惠 《河南科学》 2017年第4期535-540,共6页
研究AR(1)时间序列模型在平稳条件下的贝叶斯推断理论,构造了模型自回归系数和尺度参数的无信息先验分布,推导得到了其后验分布、后验均值、众数、中位数、分位数和最大后验区间估计,最后对几组仿真数据进行了贝叶斯分析.
关键词 时间序列 AR(1)模型 无信息先验 后验分布 贝叶斯分析
下载PDF
基于无信息先验分布的高可靠性产品可靠性评估方法研究
20
作者 黄景德 刘薇 杨勇 《测试技术学报》 2015年第2期100-104,共5页
高可靠性产品检验项目中存在大量的无失效数据,使得整机的可靠性评估更加困难,为准确评估高价值产品的可靠性,在多层Bayes方法基础上,重点研究了在小子样的情况下,没有验前信息或者验前信息不足以确定先验分布时,充分利用生产和研制过... 高可靠性产品检验项目中存在大量的无失效数据,使得整机的可靠性评估更加困难,为准确评估高价值产品的可靠性,在多层Bayes方法基础上,重点研究了在小子样的情况下,没有验前信息或者验前信息不足以确定先验分布时,充分利用生产和研制过程中零部件及单元的各种信息对系统可靠性进行精确评估,确定了二项分布无信息先验分布的方法,探讨了综合评判法在多层Bayes方法中的应用,为可靠性要求高、结构复杂、单元信息分布多样化复杂系统的可靠性评估奠定了基础.该方法适用于造价昂贵的高价值产品可靠性评估,在工程上有一定的实用和推广价值. 展开更多
关键词 无信息先验分布 多层Bayes方法 高可靠性产品 可靠性评估
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部