目前对中文文本分类的研究主要集中于对字符粒度、词语粒度、句子粒度、篇章粒度等数据信息的单一模式划分,这往往缺少不同粒度下语义所包含的信息特征。为了更加有效提取文本所要表达的核心内容,提出一种基于注意力机制融合多粒度信息...目前对中文文本分类的研究主要集中于对字符粒度、词语粒度、句子粒度、篇章粒度等数据信息的单一模式划分,这往往缺少不同粒度下语义所包含的信息特征。为了更加有效提取文本所要表达的核心内容,提出一种基于注意力机制融合多粒度信息的文本分类模型。该模型对字、词和句子粒度方面构造嵌入向量,其中对字和词粒度采用Word2Vec训练模型将数据转换为字向量和词向量,通过双向长短期记忆网络(bi-directional long short-term memory,BiLSTM)获取字和词粒度向量的上下文语义特征,利用FastText模型提取句子向量中包含的特征,将不同种特征向量分别送入到注意力机制层进一步获取文本重要的语义信息。实验结果表明,该模型在三种公开的中文数据集上的分类准确率比单一粒度和两两粒度结合的分类准确率都有所提高。展开更多
异构信息网络(Heterogeneous Information Network, HIN)凭借其丰富的语义信息和结构信息被广泛应用于推荐系统中,虽然取得了很好的推荐效果,但较少考虑局部特征放大、信息交互和多嵌入聚合等问题。针对这些问题,提出了一种新的用于top-...异构信息网络(Heterogeneous Information Network, HIN)凭借其丰富的语义信息和结构信息被广泛应用于推荐系统中,虽然取得了很好的推荐效果,但较少考虑局部特征放大、信息交互和多嵌入聚合等问题。针对这些问题,提出了一种新的用于top-N推荐的多嵌入融合推荐(Multi-embedding Fusion Recommendation, MFRec)模型。首先,该模型在用户和项目学习分支中都采用对象上下文表示网络,充分利用上下文信息以放大局部特征,增强相邻节点的交互性;其次,将空洞卷积和空间金字塔池化引入元路径学习分支,以便获取多尺度信息并增强元路径的节点表示;然后,采用多嵌入融合模块以便更好地进行用户、项目以及元路径的嵌入融合,细粒度地进行多嵌入之间的交互学习,并强调了各特征的不同重要性程度;最后,在两个公共推荐系统数据集上进行了实验,结果表明所提模型MFRec优于现有的其他top-N推荐系统模型。展开更多
文摘目前对中文文本分类的研究主要集中于对字符粒度、词语粒度、句子粒度、篇章粒度等数据信息的单一模式划分,这往往缺少不同粒度下语义所包含的信息特征。为了更加有效提取文本所要表达的核心内容,提出一种基于注意力机制融合多粒度信息的文本分类模型。该模型对字、词和句子粒度方面构造嵌入向量,其中对字和词粒度采用Word2Vec训练模型将数据转换为字向量和词向量,通过双向长短期记忆网络(bi-directional long short-term memory,BiLSTM)获取字和词粒度向量的上下文语义特征,利用FastText模型提取句子向量中包含的特征,将不同种特征向量分别送入到注意力机制层进一步获取文本重要的语义信息。实验结果表明,该模型在三种公开的中文数据集上的分类准确率比单一粒度和两两粒度结合的分类准确率都有所提高。