We study the stationary Wigner equation on a bounded, one- dimensional spatial domain with inflow boundary conditions by using the parity decomposition of L. Barletti and P. F. Zweifel [Transport Theory Statist. Phys....We study the stationary Wigner equation on a bounded, one- dimensional spatial domain with inflow boundary conditions by using the parity decomposition of L. Barletti and P. F. Zweifel [Transport Theory Statist. Phys., 2001, 30(4-6): 507-520]. The decomposition reduces the half-range, two-point boundary value problem into two decoupled initial value problems of the even part and the odd part. Without using a cutoff approximation around zero velocity, we prove that the initial value problem for the even part is well-posed. For the odd part, we prove the uniqueness of the solution in the odd L2-spaee by analyzing the moment system. An example is provided to show that how to use the analysis to obtain the solution of the stationary Wigner equation with inflow boundary conditions.展开更多
大涡模拟中的入口湍流的生成方法研究,是当前计算风工程领域国内外研究的热点问题。该文在NSRFG(narrowband synthesis random flow generation)方法的基础上,对其中重要参数无量纲长度尺度β、空间相关性和调谐因子γj进行深入理论分析...大涡模拟中的入口湍流的生成方法研究,是当前计算风工程领域国内外研究的热点问题。该文在NSRFG(narrowband synthesis random flow generation)方法的基础上,对其中重要参数无量纲长度尺度β、空间相关性和调谐因子γj进行深入理论分析,推导了调谐因子γj与无量纲长度尺度的函数关系,建议了一种改进的入口湍流合成技术——INSRFG(improved NSRFG)方法。利用该方法进行了与规范相对应的4类标准地貌湍流风场的大涡模拟数值仿真;通过对比分析,表明INSRFG方法模拟的大气边界层湍流风场,能较好满足脉动风速功率谱、空间相关性等湍流风场基本特性,并较好实现大气边界层风场模拟中的平衡态基本要求。研究表明,这种新的INSRFG湍流合成方法具有参数取值明确、数学模型简洁、计算效率相对较高的优点,是一种进行建筑结构大涡模拟研究的具有较好前景的通用入口湍流生成方法。展开更多
文摘We study the stationary Wigner equation on a bounded, one- dimensional spatial domain with inflow boundary conditions by using the parity decomposition of L. Barletti and P. F. Zweifel [Transport Theory Statist. Phys., 2001, 30(4-6): 507-520]. The decomposition reduces the half-range, two-point boundary value problem into two decoupled initial value problems of the even part and the odd part. Without using a cutoff approximation around zero velocity, we prove that the initial value problem for the even part is well-posed. For the odd part, we prove the uniqueness of the solution in the odd L2-spaee by analyzing the moment system. An example is provided to show that how to use the analysis to obtain the solution of the stationary Wigner equation with inflow boundary conditions.