期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于改进蚁群算法的机器人路径规划研究 被引量:39
1
作者 万晓凤 胡伟 +1 位作者 方武义 郑博嘉 《计算机工程与应用》 CSCD 2014年第18期63-66,共4页
在二维静态环境下的机器人路径规划中,采用基本蚁群算法寻优存在搜索时间较长、效率较低、容易陷入局部最优等问题。针对这些问题对基本蚁群算法进行改进,改进的蚁群算法使用不同的期望值机制,采用挥发系数自适应方式更新信息激素,并加... 在二维静态环境下的机器人路径规划中,采用基本蚁群算法寻优存在搜索时间较长、效率较低、容易陷入局部最优等问题。针对这些问题对基本蚁群算法进行改进,改进的蚁群算法使用不同的期望值机制,采用挥发系数自适应方式更新信息激素,并加入拐点参数作为路径的评价标准之一。对这两种算法进行仿真分析,可得改进后的蚁群算法比基本蚁群算法搜索能力更强,算法效率更高,所寻路径更短。结果表明,该改进算法提高了算法效率,抑制了算法陷入局部最优并实现了机器人最优路径搜索,使机器人可以快速地避开障碍物安全到达目标点。 展开更多
关键词 蚁群算法 路径规划 挥发系数自适应 拐点参数 最优路径
下载PDF
改进蚁群算法的机器人路径规划研究 被引量:20
2
作者 毛嘉琪 《计算机应用与软件》 北大核心 2021年第5期300-306,共7页
针对基本蚁群算法收敛速度慢,易陷入局部最优解等问题,提出一种静态障碍环境下的改进蚁群算法。利用A^(*)算法来设定信息素初始值,提高算法初始阶段搜索效率;采用新的信息素更新规则,并且动态调整启发函数和信息素挥发速率,加快算法的... 针对基本蚁群算法收敛速度慢,易陷入局部最优解等问题,提出一种静态障碍环境下的改进蚁群算法。利用A^(*)算法来设定信息素初始值,提高算法初始阶段搜索效率;采用新的信息素更新规则,并且动态调整启发函数和信息素挥发速率,加快算法的收敛速度,扩大搜索空间。仿真实验表明,与其他算法在相同情况下比较,改进算法在路径相同的情况下拥有较快的收敛速度以及较高的稳定性,且在不同复杂度的环境中均能得到最优路径,验证了其有效性和可靠性。 展开更多
关键词 A^(*)算法 蚁群算法 启发函数 信息素挥发因子 拐点参数
下载PDF
基于改进蚁群算法的多机器人路径规划研究 被引量:18
3
作者 顾军华 孟慧婕 +1 位作者 夏红梅 董永峰 《河北工业大学学报》 CAS 2016年第5期28-34,共7页
针对蚁群算法在机器人路径规划过程中存在的收敛速度慢、效率较低、容易陷入局部最优等缺点,提出了一种多步长的改进蚁群算法.该算法实现了多步长路径规划;同时在概率公式中加入了拐点参数,使路径更加平滑;并且提出了新的信息素奖励惩... 针对蚁群算法在机器人路径规划过程中存在的收敛速度慢、效率较低、容易陷入局部最优等缺点,提出了一种多步长的改进蚁群算法.该算法实现了多步长路径规划;同时在概率公式中加入了拐点参数,使路径更加平滑;并且提出了新的信息素奖励惩罚机制.将改进的蚁群算法应用于具有3个优化目标的多机器人路径规划中,采用碰撞预测策略和路径协调策略完成多机器人间的协调避碰.仿真结果表明,改进的蚁群算法规划的路径更短、更平滑,效率更高,验证了该算法在多机器人路径规划中的有效性和可行性. 展开更多
关键词 多机器人 路径规划 改进蚁群算法 多步长 拐点参数 协调避碰
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部