Unsteady hydromagnetic Couette flow of a viscous incompressible electrically conducting fluid in a rotating system is studied when the fluid flow within the channel is induced due to the impulsive movement of the one ...Unsteady hydromagnetic Couette flow of a viscous incompressible electrically conducting fluid in a rotating system is studied when the fluid flow within the channel is induced due to the impulsive movement of the one of the plates of the channel.The plates of the channel are considered porous and the magnetic field is fixed relative to the moving plate.Exact solution of the governing equations is obtained by Laplace transform technique.The expression for the shear stress at the moving plate is also obtained.Asymptotic behaviour of the solution is analyzed for small as well as large values of time t to highlight the transient approach to the final steady state flow and the effects of rotation,magnetic field and suction/injection.It is found that suction has retarding influence on the primary as well as secondary flow where as injection and time have accelerating influence on the primary and secondary flows.展开更多
Using a simple damped slab model, it was possible to show that a local wind induced 88% (15 of 17) of the near-inertial oscillations (NIO) observed in the mixed layer near the east coast of Korea from 1999 to 2004...Using a simple damped slab model, it was possible to show that a local wind induced 88% (15 of 17) of the near-inertial oscillations (NIO) observed in the mixed layer near the east coast of Korea from 1999 to 2004. The model, however, overestimated the energy level in about two-thirds of the simulated cases, because the slab model was forced with winds whose characteristic period was shorter than the damping time scale of the model at 1.5 d. At the observation site, due to typhoons and orographic effects, high-frequency wind forcing is quite common, as is the overestimation of the energy level in the slab model results. In short, a simple slab model with a damping time-scale of about 1.5 d would be enough to show that the local wind was the main energy source of the near-inertial energy in this area, but the model could not be used to accurately estimate the amount of the work done by the wind to the mixed layer.展开更多
文摘Unsteady hydromagnetic Couette flow of a viscous incompressible electrically conducting fluid in a rotating system is studied when the fluid flow within the channel is induced due to the impulsive movement of the one of the plates of the channel.The plates of the channel are considered porous and the magnetic field is fixed relative to the moving plate.Exact solution of the governing equations is obtained by Laplace transform technique.The expression for the shear stress at the moving plate is also obtained.Asymptotic behaviour of the solution is analyzed for small as well as large values of time t to highlight the transient approach to the final steady state flow and the effects of rotation,magnetic field and suction/injection.It is found that suction has retarding influence on the primary as well as secondary flow where as injection and time have accelerating influence on the primary and secondary flows.
基金The Agency for Defense Development under contract Nos 609-83-01532,UD000008BD and UD970022ADKorea Institute of Science and Technology Evaluation and Planning under contract No.2000-N-NL-01-C-012+3 种基金the Korean Ministry of Environments under contract No.121-041-033Korean Ministry of Education under the BK21 ProgramKorea Research Foundation under the Free-doctoral scholars programKorean Ministry of Oceans and Fisheries under the projects"Development of Korea Operational Oceanographic System(KOOS)"and"Development of Technology for CO2Marine Geological Storage"
文摘Using a simple damped slab model, it was possible to show that a local wind induced 88% (15 of 17) of the near-inertial oscillations (NIO) observed in the mixed layer near the east coast of Korea from 1999 to 2004. The model, however, overestimated the energy level in about two-thirds of the simulated cases, because the slab model was forced with winds whose characteristic period was shorter than the damping time scale of the model at 1.5 d. At the observation site, due to typhoons and orographic effects, high-frequency wind forcing is quite common, as is the overestimation of the energy level in the slab model results. In short, a simple slab model with a damping time-scale of about 1.5 d would be enough to show that the local wind was the main energy source of the near-inertial energy in this area, but the model could not be used to accurately estimate the amount of the work done by the wind to the mixed layer.