目的传统的缺陷图像识别算法需要手工构建、选择目标的主要特征,并选取合适的分类器进行识别,局限性较大。为此研究了一种基于Faster R-CNN(faster Regions with convolutional neural networks features)的缺陷检测方法,该方法采用卷...目的传统的缺陷图像识别算法需要手工构建、选择目标的主要特征,并选取合适的分类器进行识别,局限性较大。为此研究了一种基于Faster R-CNN(faster Regions with convolutional neural networks features)的缺陷检测方法,该方法采用卷积网络自动提取目标的特征,避免了缺陷检测依赖手工设计缺陷特征的问题。方法该方法基于卷积神经网络。首先,确定缺陷检测任务:选择工业CT(computed tomography)图像中主要存在的3种类型的缺陷:夹渣、气泡、裂纹为检测目标;其次,人工对缺陷图像采用矩形框(GT box)进行标注,生成坐标文件,并依据矩形框的长宽比选定42种类型的锚窗(anchor);在训练之前采用同态滤波对数据集做增强处理,增强后的图片经过卷积层与池化层后获得卷积特征图,并送入区域建议网络RPN(region proposal networks)中进行初次的目标(不区分具体类别)和背景判断,同时粗略地回归目标边框;最后经过RoI(region of interest)pooling层后输出固定大小的建议框,利用分类网络对建议区域进行具体的类别判断,并精确回归目标的边框。结果待检测数据集的图片大小在150×150到350×250之间,每张图片含有若干个不同类别的气泡、夹渣和裂纹。利用训练出来的模型对缺陷图片进行检测,可以有效识别到不同类别的缺陷目标,其中可以检测到面积最小的缺陷区域为9×9 piexl,并快速、准确地标出气泡、夹渣和裂纹的位置,检测准确率高达96%,平均每张图片的检测时间为86 ms。结论所提出的Faster R-CNN工业CT图像缺陷检测方法,避免了传统缺陷检测需要手动选取目标特征的问题,缺陷的识别与定位过程的自动化程度更高;该方法检测效果良好,如果需要检测更多种类的缺陷,只需要对网络进行微调训练即可获得新的检测模型。本文为工业CT图像缺陷检测提供了一种更高效的方法。展开更多