A construction method for power system transient energy function is studied in the paper, which is simple and universal, and can unify the forms of some current en- ergy functions. A transient energy function includin...A construction method for power system transient energy function is studied in the paper, which is simple and universal, and can unify the forms of some current en- ergy functions. A transient energy function including the induction motor model is derived using the method. The unintegrable term is dealt with to get an approxi- mate energy function. Simulations in a 3-bus system and in the WSCC 4-generator system verify the validity of the proposed energy function. The function can be applied to direct transient stability analysis of multi-machine large power systems and provides a tool for analysis of the interaction between the generator angle stability and the load voltage stability.展开更多
The Wind Energy Conversion System(WECS)based Doubly Fed Induction Generator(DFIG)has experienced a rapid development in the world,which leads to an increasing insertion of this source of energy in the electrical grids...The Wind Energy Conversion System(WECS)based Doubly Fed Induction Generator(DFIG)has experienced a rapid development in the world,which leads to an increasing insertion of this source of energy in the electrical grids.The sudden and temporary drop of voltage at the network can affect the operation of the DFIG;the voltage dips produce high peak currents on the stator and rotor circuits,without protection,the rotor side converter(RSC)will suffer also from over-current limit,consequently,the RSC may even be destroyed and the generator be damaged.In this paper a new Direct Power Control(DPC)method was developed,in order to control the stator powers and help the operation of the aero-generator during the faults grid;by injecting the reactive power into the network to contribute to the return of voltage,and set the active power to the optimum value to suppress the high peak currents.The DPC method was designed using the nonlinear Backstepping(BS)controller associated with the Lyapunov function to ensure the stability and robustness of the system.A comparison study was undertaken to verify the robustness and effectiveness of the DPC-BS to that of the classical vector control(VC)using Proportional-Integral(PI)correctors.All were simulated under the Simulink®software.展开更多
基金Supported by the Special Fund of the National Priority Basic Research of China (Grant No. 2004CB217904)the National Natural Science Foundation of China (Grant No. 50323002)
文摘A construction method for power system transient energy function is studied in the paper, which is simple and universal, and can unify the forms of some current en- ergy functions. A transient energy function including the induction motor model is derived using the method. The unintegrable term is dealt with to get an approxi- mate energy function. Simulations in a 3-bus system and in the WSCC 4-generator system verify the validity of the proposed energy function. The function can be applied to direct transient stability analysis of multi-machine large power systems and provides a tool for analysis of the interaction between the generator angle stability and the load voltage stability.
文摘The Wind Energy Conversion System(WECS)based Doubly Fed Induction Generator(DFIG)has experienced a rapid development in the world,which leads to an increasing insertion of this source of energy in the electrical grids.The sudden and temporary drop of voltage at the network can affect the operation of the DFIG;the voltage dips produce high peak currents on the stator and rotor circuits,without protection,the rotor side converter(RSC)will suffer also from over-current limit,consequently,the RSC may even be destroyed and the generator be damaged.In this paper a new Direct Power Control(DPC)method was developed,in order to control the stator powers and help the operation of the aero-generator during the faults grid;by injecting the reactive power into the network to contribute to the return of voltage,and set the active power to the optimum value to suppress the high peak currents.The DPC method was designed using the nonlinear Backstepping(BS)controller associated with the Lyapunov function to ensure the stability and robustness of the system.A comparison study was undertaken to verify the robustness and effectiveness of the DPC-BS to that of the classical vector control(VC)using Proportional-Integral(PI)correctors.All were simulated under the Simulink®software.