Ni_(47)Ti_(44)Nb_(9)shape memory alloy(SMA)is a promising material in the aerospace field due to its wide transformation hysteresis.The application of shape memory effect depends on multistep thermomechan-ical loading...Ni_(47)Ti_(44)Nb_(9)shape memory alloy(SMA)is a promising material in the aerospace field due to its wide transformation hysteresis.The application of shape memory effect depends on multistep thermomechan-ical loading,viz.,low-temperature deformation and subsequent heating to recovery.Low-temperature deformation prestrain plays a pivotal role in shape memory properties tailoring of SMA components.However,microstructure evolution and deformation mechanisms of Ni_(47)Ti_(44)Nb_(9)SMA subjected to vari-ous prestrain levels are still unclear.To this end,microstructure evolution and shape memory behaviors of Ni_(47)Ti_(44)Nb_(9)alloy subjected to multistep thermomechanical loading with prestrain levels of 8%-16%at-28℃(M_(s)+30℃)were investigated.The results demonstrate that the stress-strain curve of the specimen exhibits four distinct stages at a maximal prestrain of 16%.Whereas stageⅡand stageⅢend at prestrains of∼8%and∼12%,respectively.In stageⅡ,the stress-induced martensitic transformation is accompanied by the dislocation slip of the NiTi matrix andβ-Nb inclusions.In stageⅢ,in addition to the higher density of dislocations and further growth of stress-induced martensite variants(SIMVs),(001)compound twins are introduced as a result of the(001)deformation twinning in stress-induced martensite.More{20-1}martensite twins are gradually introduced in stageⅣ.Correspondingly,after subsequent unloading and heating,a higher density of{114}austenite twins form in the specimen with a larger prestrain of 16%.With increasing prestrain from 8%to 16%,the recoverable strainε_(re)^(T)upon heating increases first and then decreases.Theε_(re)^(T)obtains a maximum of 7.03%at 10%prestrain and de-creases to 6.17%at 16%prestrain.The increase ofε_(re)^(T)can be attributed to the formation of new SIMVs,the further growth of existing SIMVs,and the recoverable(001)compound twins.While the decrease ofε_(re)^(T)is mainly associated with the irrecoverable strain by{20−1}martensite twins.The effect ofβ-Nb inclusions o展开更多
Mo element was added to cobalt-based alloy L605,and cold forging deformation was performed.The effects of the addition and cold forging deformation on the microstructure and mechanical properties of the alloy were stu...Mo element was added to cobalt-based alloy L605,and cold forging deformation was performed.The effects of the addition and cold forging deformation on the microstructure and mechanical properties of the alloy were studied by thermodynamic calculation,electron backscatter diffraction,transmission electron microscopy,and X-ray diffraction.The stacking fault energy(SFE)of the alloy decreased after the addition,and the formation of stacking faults and intersections were promoted to improve the strength and hardness.The tensile strength of the alloy with Mo increased from 1190 to 1702 MPa after 24%cold deformation,producing significant work hardening.The strengthening mechanism is strain-induced martensitic transformation(SIMT)and deformation twinning.The alloy,combined with Mo and after 24%deformation,had both high strength and ductility in comparison with the original cobalt-based alloy L605.This is attributed to the lower SFE which caused the increase in stacking fault density.During the tensile process,theε-hcp phase was easily generated at the stacking fault to reduce the stress concentration and increase the ductility.Controlling SIMT by adjusting the density of stacking faults can improve the mechanical properties of cobalt-based alloys.Theε-hcp phase,the interaction between deformation twins and dislocations,and the interaction between e-hcp phases during cold forging deformation caused local stress concentration,lowering ductility and toughness.展开更多
The structural transformation of mesophase to crystalline phase of strain-induced poly(L-lactic acid) has been investigated by differential scanning calorimetry(DSC) and in situ temperature dependent polarized Fourier...The structural transformation of mesophase to crystalline phase of strain-induced poly(L-lactic acid) has been investigated by differential scanning calorimetry(DSC) and in situ temperature dependent polarized Fourier transform infrared(FTIR) spectroscopy. It is found that, as the drawing temperature increases, melting of strain-induced mesophase in the heating process can remarkably interfere the crystallization behavior subsequently. Coupling with in situ polarized FTIR, from 60 °C to 76 °C, the mesophase melts partially rather than completely melting, and changes immediately to three-dimensional ordered structure. Of particular note, through monitoring the subtle spectral change in the critical phase transformation temperature from 60 °C to 64 °C, it is clearly demonstrated that relaxation of oriented amorphous chains initially takes place prior to the melting of mesophase.展开更多
Developing bulk metallic glass composites(BMGCs)with high toughness is vital for their practical application.However,the influence of different microstructures on the impact toughness of BMGCs is still unclear.The eff...Developing bulk metallic glass composites(BMGCs)with high toughness is vital for their practical application.However,the influence of different microstructures on the impact toughness of BMGCs is still unclear.The effects of Al addition and cryogenic cyclic treatment(CCT)on the Charpy impact toughness,a K,at 298 and 77 K of a series of phase-transformable BMGCs are investigated in this work.It is found that deformation-induced martensitic transformation(DIMT)of theβ-Ti dendrites is the dominant toughening mechanism in the phase-transformable BMGCs at 298 K,but at 77 K,the toughness of BMGCs is primarily determined by the intrinsic toughness of the glass matrix.The addition of Al can moderately tune theβ-Ti phase stability,which then affects the amount of DIMT and impact toughness of the BMGCs at 298 K.However,at 77 K,Al addition causes a monotonic decrease in the toughness of the BMGCs due to the embrittlement of the glass matrix.It is found that CCT can effectively rejuvenate the phase-transformable BMGCs,which results in an enhanced impact toughness at 298 K.However,the toughness at 77 K monotonously decreases with increasing the number of CCT cycles,suggesting that the rejuvenation of the glass matrix affects the toughness at both 298 and 77 K of BMGCs,but in dramatically different ways.These findings reveal the influence of microstructures and CCT on the impact toughness of BMGCs and provide insights that could be useful for designing tougher BMGs and BMGCs.展开更多
The structure of the all-d-metal alloy Ni_(50-x)Co_(x)Mn_(25)V_(25)(x=0–50)is investigated by using theoretical and experimental methods.The first-principles calculations indicate that the most stable structure of th...The structure of the all-d-metal alloy Ni_(50-x)Co_(x)Mn_(25)V_(25)(x=0–50)is investigated by using theoretical and experimental methods.The first-principles calculations indicate that the most stable structure of the Ni_2MnV alloy is face-centered cubic (fcc)type structure with ferrimagnetic state and the equilibrium lattice constant is 3.60A,which is in agreement with the experimental result.It is remarkable that replacing partial Ni with Co can turn the alloy from the fcc structure to the B2-type Heusler structure as Co content x>37 by using the melting spinning method,implying that the d–d hybridization between Co/Mn elements and low-valent elements V stabilizes the Heusler structure.The Curie temperature T_(C) of all-dmetal Heuser alloy Ni_(50-x)Co_(x)Mn_(25)V_(25)(x>37)increases almost linearly with the increase of Co due to that the interaction of Co–Mn is stronger than that of Ni–Mn.A magnetic transition from ferromagnetic state to weak magnetic state accompanying with grinding stress induced transformation from B2 to the dual-phase of B2 and fcc has been observed in these all-d-metal Heusler alloys.This phase transformation and magnetic change provide a guide to overcome the brittleness and make the all-d-metal Heusler alloy interesting in stress and magnetic driving structural transition.展开更多
Often,the addition of more than 4 wt.%Mn to medium-Mn steels is necessary to enhance the thermal stability of intercritical austenite for achieving sufficient amounts of retained austenite(RA)at room tem-perature.In t...Often,the addition of more than 4 wt.%Mn to medium-Mn steels is necessary to enhance the thermal stability of intercritical austenite for achieving sufficient amounts of retained austenite(RA)at room tem-perature.In this paper,a medium-Mn steel with Mn content as low as 2.7 wt.%was designed via alloying with a small amount of Al,and the microstructure and mechanical properties of the steel,subjected to intercritical annealing(IA)at 745°C for different times followed by oil quenching,were investigated.Results show that the volume fraction of RA increases first and then decreases with IA time,with the maximum of 0.36 obtained at IA time of 50 min.It is demonstrated that Al addition slows down the in-terface migration and growth kinetics of reverted austenite via retarding C diffusion in ferrite during IA,which,hence,decreases the amount and size of the reverted austenite and partitions more C and Mn into it.This suggests that Al plays a favorable role in enhancing the thermal stability of reverted austenite and increasing the amount of austenite retained at room temperature.Due to the presence of large amounts of RA and the strong transformation-induced plasticity effect generated during plastic deformation,the steel exhibits persistent high strain hardening and superior mechanical properties,comparable to those of reported medium-Mn steels containing higher Mn content.The present result offers a new insight into the role of Al in adjusting microstructure-property relationships and opens a promising way for designing low-cost,high performance medium-Mn steels with low Mn content for industrial applications.展开更多
Increasingly harsh service conditions place higher requirements for the high strain-rate performance of titanium alloys.Adiabatic shear band(ASB),a phenomenon prone to dynamic loading,is often accom-panied by catastro...Increasingly harsh service conditions place higher requirements for the high strain-rate performance of titanium alloys.Adiabatic shear band(ASB),a phenomenon prone to dynamic loading,is often accom-panied by catastrophic damage.Yet,it is unclear how the internal nanostructures are related to shear instability.Here we report detailed microstructural evolution in the ASB of a titanium alloy via in-depth focused ion beam(FIB),transmission Kikuchi diffraction(TKD),and high-resolution transmission electron microscope(HRTEM)analyses,with the deformation instability phenomenon discussed from the energy perspective.The ASB interior undergoes multifaceted changes,namely deformation-induced beta-to-alpha transformation and deformation-induced martensitic transformation to form substantially refined and heterogeneous structures.Meanwhile,two types of extremely fine twins are identified to occur within both nano-sized martensite and alpha phase.The critical plastic work representing the onset of adiabatic shear instability and dynamic equilibrium is observed to be constant for a specific structure in the same deformation mode.The energy analysis could be extended to other materials subjected to high strain-rate dynamic deformation.展开更多
Failure may occur catastrophically by fracture along grain boundaries when temper embrittlement induced by non-equilibrium grain-boundary segregation (NGS) of phosphorus atoms. Temper embrittlement control technigue b...Failure may occur catastrophically by fracture along grain boundaries when temper embrittlement induced by non-equilibrium grain-boundary segregation (NGS) of phosphorus atoms. Temper embrittlement control technigue based on the theory of NGS and deformation induced phase transformation method was studied in this paper. Grain refinement technique by deformation induced phase transformation in low-alloy steel,12Cr1MoV( which is used in steam pipeline of ships),was experimentally investigated. A single-pass hot rolling process by using a Gleeble-1500 system was performed and the experimental results showed that the grain sizes were obviously affected by the deforming temperature,strain,strain rate and the quenching cooling rate. Temper embrittlement may be controlled and obviously improved by grain refinement.展开更多
基金support from the National Natural Science Foundation of China(No.51775441)the National Science Fund for Excellent Young Scholars(No.51522509).
文摘Ni_(47)Ti_(44)Nb_(9)shape memory alloy(SMA)is a promising material in the aerospace field due to its wide transformation hysteresis.The application of shape memory effect depends on multistep thermomechan-ical loading,viz.,low-temperature deformation and subsequent heating to recovery.Low-temperature deformation prestrain plays a pivotal role in shape memory properties tailoring of SMA components.However,microstructure evolution and deformation mechanisms of Ni_(47)Ti_(44)Nb_(9)SMA subjected to vari-ous prestrain levels are still unclear.To this end,microstructure evolution and shape memory behaviors of Ni_(47)Ti_(44)Nb_(9)alloy subjected to multistep thermomechanical loading with prestrain levels of 8%-16%at-28℃(M_(s)+30℃)were investigated.The results demonstrate that the stress-strain curve of the specimen exhibits four distinct stages at a maximal prestrain of 16%.Whereas stageⅡand stageⅢend at prestrains of∼8%and∼12%,respectively.In stageⅡ,the stress-induced martensitic transformation is accompanied by the dislocation slip of the NiTi matrix andβ-Nb inclusions.In stageⅢ,in addition to the higher density of dislocations and further growth of stress-induced martensite variants(SIMVs),(001)compound twins are introduced as a result of the(001)deformation twinning in stress-induced martensite.More{20-1}martensite twins are gradually introduced in stageⅣ.Correspondingly,after subsequent unloading and heating,a higher density of{114}austenite twins form in the specimen with a larger prestrain of 16%.With increasing prestrain from 8%to 16%,the recoverable strainε_(re)^(T)upon heating increases first and then decreases.Theε_(re)^(T)obtains a maximum of 7.03%at 10%prestrain and de-creases to 6.17%at 16%prestrain.The increase ofε_(re)^(T)can be attributed to the formation of new SIMVs,the further growth of existing SIMVs,and the recoverable(001)compound twins.While the decrease ofε_(re)^(T)is mainly associated with the irrecoverable strain by{20−1}martensite twins.The effect ofβ-Nb inclusions o
基金supported by Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region (Grant No.NJYT23115)the Inner Mongolia Natural Science Foundation (Grant No.2022MS05039).
文摘Mo element was added to cobalt-based alloy L605,and cold forging deformation was performed.The effects of the addition and cold forging deformation on the microstructure and mechanical properties of the alloy were studied by thermodynamic calculation,electron backscatter diffraction,transmission electron microscopy,and X-ray diffraction.The stacking fault energy(SFE)of the alloy decreased after the addition,and the formation of stacking faults and intersections were promoted to improve the strength and hardness.The tensile strength of the alloy with Mo increased from 1190 to 1702 MPa after 24%cold deformation,producing significant work hardening.The strengthening mechanism is strain-induced martensitic transformation(SIMT)and deformation twinning.The alloy,combined with Mo and after 24%deformation,had both high strength and ductility in comparison with the original cobalt-based alloy L605.This is attributed to the lower SFE which caused the increase in stacking fault density.During the tensile process,theε-hcp phase was easily generated at the stacking fault to reduce the stress concentration and increase the ductility.Controlling SIMT by adjusting the density of stacking faults can improve the mechanical properties of cobalt-based alloys.Theε-hcp phase,the interaction between deformation twins and dislocations,and the interaction between e-hcp phases during cold forging deformation caused local stress concentration,lowering ductility and toughness.
基金financial supports from the National Natural Science Foundation of China(Nos.21774068 and 21704053)Natural Science Foundation of Shandong Province(No.ZR2017BB069)
文摘The structural transformation of mesophase to crystalline phase of strain-induced poly(L-lactic acid) has been investigated by differential scanning calorimetry(DSC) and in situ temperature dependent polarized Fourier transform infrared(FTIR) spectroscopy. It is found that, as the drawing temperature increases, melting of strain-induced mesophase in the heating process can remarkably interfere the crystallization behavior subsequently. Coupling with in situ polarized FTIR, from 60 °C to 76 °C, the mesophase melts partially rather than completely melting, and changes immediately to three-dimensional ordered structure. Of particular note, through monitoring the subtle spectral change in the critical phase transformation temperature from 60 °C to 64 °C, it is clearly demonstrated that relaxation of oriented amorphous chains initially takes place prior to the melting of mesophase.
基金supported by the National Natural Science Foundation of China(Nos.52171164 and 51790484)National Key Laboratory of Science and Technology on Materials under Shock and Impact(WDZC2022-13)+4 种基金the National Key Research and Development Program of China(No.2021YFA0716303)Start-up research grant(No.SRG/2020/000095)of Science and Engineering Research Board,DST,GoI.A∗STAR,Singapore via the Structural Metals and Alloys Program(No.A18B1b0061)the Natural Science Foundation of Liaoning Province(No.2021-MS-009)the China Manned Space Engineering,the Chinese Academy of Sciences(ZDBS-LY-JSC023)the Youth Innovation Promotion Association CAS(No.2021188).
文摘Developing bulk metallic glass composites(BMGCs)with high toughness is vital for their practical application.However,the influence of different microstructures on the impact toughness of BMGCs is still unclear.The effects of Al addition and cryogenic cyclic treatment(CCT)on the Charpy impact toughness,a K,at 298 and 77 K of a series of phase-transformable BMGCs are investigated in this work.It is found that deformation-induced martensitic transformation(DIMT)of theβ-Ti dendrites is the dominant toughening mechanism in the phase-transformable BMGCs at 298 K,but at 77 K,the toughness of BMGCs is primarily determined by the intrinsic toughness of the glass matrix.The addition of Al can moderately tune theβ-Ti phase stability,which then affects the amount of DIMT and impact toughness of the BMGCs at 298 K.However,at 77 K,Al addition causes a monotonic decrease in the toughness of the BMGCs due to the embrittlement of the glass matrix.It is found that CCT can effectively rejuvenate the phase-transformable BMGCs,which results in an enhanced impact toughness at 298 K.However,the toughness at 77 K monotonously decreases with increasing the number of CCT cycles,suggesting that the rejuvenation of the glass matrix affects the toughness at both 298 and 77 K of BMGCs,but in dramatically different ways.These findings reveal the influence of microstructures and CCT on the impact toughness of BMGCs and provide insights that could be useful for designing tougher BMGs and BMGCs.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51671024 and 52088101)State Key Lab of Advanced Metals and Materials(Grant No.2019Z12)the Fundamental Research Funds for the Central Universities(Grant No.FRF-BD-20-12A)。
文摘The structure of the all-d-metal alloy Ni_(50-x)Co_(x)Mn_(25)V_(25)(x=0–50)is investigated by using theoretical and experimental methods.The first-principles calculations indicate that the most stable structure of the Ni_2MnV alloy is face-centered cubic (fcc)type structure with ferrimagnetic state and the equilibrium lattice constant is 3.60A,which is in agreement with the experimental result.It is remarkable that replacing partial Ni with Co can turn the alloy from the fcc structure to the B2-type Heusler structure as Co content x>37 by using the melting spinning method,implying that the d–d hybridization between Co/Mn elements and low-valent elements V stabilizes the Heusler structure.The Curie temperature T_(C) of all-dmetal Heuser alloy Ni_(50-x)Co_(x)Mn_(25)V_(25)(x>37)increases almost linearly with the increase of Co due to that the interaction of Co–Mn is stronger than that of Ni–Mn.A magnetic transition from ferromagnetic state to weak magnetic state accompanying with grinding stress induced transformation from B2 to the dual-phase of B2 and fcc has been observed in these all-d-metal Heusler alloys.This phase transformation and magnetic change provide a guide to overcome the brittleness and make the all-d-metal Heusler alloy interesting in stress and magnetic driving structural transition.
基金financially supported by the National Natural Science Foundation of China(Nos.52271119 and U1760116)the I nnovation Ability Promotion Program of Hebei(No.22567609H).
文摘Often,the addition of more than 4 wt.%Mn to medium-Mn steels is necessary to enhance the thermal stability of intercritical austenite for achieving sufficient amounts of retained austenite(RA)at room tem-perature.In this paper,a medium-Mn steel with Mn content as low as 2.7 wt.%was designed via alloying with a small amount of Al,and the microstructure and mechanical properties of the steel,subjected to intercritical annealing(IA)at 745°C for different times followed by oil quenching,were investigated.Results show that the volume fraction of RA increases first and then decreases with IA time,with the maximum of 0.36 obtained at IA time of 50 min.It is demonstrated that Al addition slows down the in-terface migration and growth kinetics of reverted austenite via retarding C diffusion in ferrite during IA,which,hence,decreases the amount and size of the reverted austenite and partitions more C and Mn into it.This suggests that Al plays a favorable role in enhancing the thermal stability of reverted austenite and increasing the amount of austenite retained at room temperature.Due to the presence of large amounts of RA and the strong transformation-induced plasticity effect generated during plastic deformation,the steel exhibits persistent high strain hardening and superior mechanical properties,comparable to those of reported medium-Mn steels containing higher Mn content.The present result offers a new insight into the role of Al in adjusting microstructure-property relationships and opens a promising way for designing low-cost,high performance medium-Mn steels with low Mn content for industrial applications.
基金supported by the National Natural Science Foundation of China (NSFC) (Nos.51871168,52271012)the Natural Sciences and Engineering Research Council of Canada (NSERC)in the form of international research collaboration.Q.C.,A.H.F.,and S.J.Q.are grateful to the Southwest Institute of Technology and Engineering Cooperation Fund (No.HDHDW5902020102)H.W.acknowledges the financial support of the National Key Laboratory Foundation of Science and Technology on Materials under Shock and Impact (No.6142902220301).
文摘Increasingly harsh service conditions place higher requirements for the high strain-rate performance of titanium alloys.Adiabatic shear band(ASB),a phenomenon prone to dynamic loading,is often accom-panied by catastrophic damage.Yet,it is unclear how the internal nanostructures are related to shear instability.Here we report detailed microstructural evolution in the ASB of a titanium alloy via in-depth focused ion beam(FIB),transmission Kikuchi diffraction(TKD),and high-resolution transmission electron microscope(HRTEM)analyses,with the deformation instability phenomenon discussed from the energy perspective.The ASB interior undergoes multifaceted changes,namely deformation-induced beta-to-alpha transformation and deformation-induced martensitic transformation to form substantially refined and heterogeneous structures.Meanwhile,two types of extremely fine twins are identified to occur within both nano-sized martensite and alpha phase.The critical plastic work representing the onset of adiabatic shear instability and dynamic equilibrium is observed to be constant for a specific structure in the same deformation mode.The energy analysis could be extended to other materials subjected to high strain-rate dynamic deformation.
文摘Failure may occur catastrophically by fracture along grain boundaries when temper embrittlement induced by non-equilibrium grain-boundary segregation (NGS) of phosphorus atoms. Temper embrittlement control technigue based on the theory of NGS and deformation induced phase transformation method was studied in this paper. Grain refinement technique by deformation induced phase transformation in low-alloy steel,12Cr1MoV( which is used in steam pipeline of ships),was experimentally investigated. A single-pass hot rolling process by using a Gleeble-1500 system was performed and the experimental results showed that the grain sizes were obviously affected by the deforming temperature,strain,strain rate and the quenching cooling rate. Temper embrittlement may be controlled and obviously improved by grain refinement.