As a fundamental fluid-structure interaction(FSI)phenomenon,vortex-induced vibrations(VIVs)of circular cylinders have been the center of the FSI research in the past several decades.Apart from its scientific significa...As a fundamental fluid-structure interaction(FSI)phenomenon,vortex-induced vibrations(VIVs)of circular cylinders have been the center of the FSI research in the past several decades.Apart from its scientific significance in rich physics,VIVs are paid great attentions by offshore engineers,as they are encountered in many ocean engineering applications.Recently,with the development of research and application,wake-induced vibration(WIV)for multiple cylinders and galloping for VIV suppression attachments are attracting a growing research interest.All these phenomena are connected with the flow-induced vibration(FIV).In this paper,we review and give some discussions on the FIV of offshore circular cylinders,including the research progress on the basic VIV mechanism of an isolated rigid or flexible cylinder,interference of multiple cylinders concerning WIV of multiple cylinders,practical VIV suppression and unwanted galloping for cylinder of attachments.Finally,we draw concluding remarks,give some comments and propose future research prospects,especially on the major challenges as well as potentials in the offline/online modelling and prediction of real-scale offshore structures with high-fidelity CFD methods,new experimental facilities and applications of artificial intelligence tools.展开更多
In consideration of the effect of the internal flowing fluid and the external marine environmental condition on the vortex-induced vibration (VIV) of top tensioned riser (Till), the differential equation is derive...In consideration of the effect of the internal flowing fluid and the external marine environmental condition on the vortex-induced vibration (VIV) of top tensioned riser (Till), the differential equation is derived based on work-energy principles and the riser near wake dynamics is modeled by Facchinetti' s wake oscillator model. Then Galerkin' s finite element approximation is implemented to derive the nonlinear matrix equation of the coupled equations and file corresponding numerical programs are compiled which solve the coupled equations directly in the time domain. The comparison of the predicted results with the recent experimental results and the prediction of SHEAR7 is performed. The results show the validity of the proposed method on the prediction of VIV of deep water risers. The effect of internal flow on the dynamic characteristics and dynmnic response of the riser is analyzed and several valuable conelusions are drawn.展开更多
Direct drive servovalves are mostly restricted to low flow rate and low bandwidth applications due to the considerable flow forces.Current studies mainly focus on enhancing the driving force,which in turn is limited t...Direct drive servovalves are mostly restricted to low flow rate and low bandwidth applications due to the considerable flow forces.Current studies mainly focus on enhancing the driving force,which in turn is limited to the development of the magnetic material.Aiming at reducing the flow forces,a novel rotary direct drive servovalve(RDDV)is introduced in this paper.This RDDV servovalve is designed in a rotating structure and its axially symmetric spool rotates within a certain angle range in the valve chamber.The servovalve orifices are formed by the matching between the square wave shaped land on the spool and the rectangular ports on the sleeve.In order to study the RDDV servovalve performance,flow rate model and mechanical model are established,wherein flow rates and flow induced torques at different spool rotation angles or spool radiuses are obtained.The model analysis shows that the driving torque can be alleviated due to the proposed valve structure.Computational fluid dynamics(CFD)analysis using ANSYS/FLUENT is applied to evaluate and validate the theoretical analysis.In addition,experiments on the flow rate and the mechanical characteristic of the RDDV servovalve are carried out.Both simulation and experimental results conform to the results of the theoretical model analysis,which proves that this novel and innovative structure for direct drive servovalves can reduce the flow force on the spool and improve valve frequency response characteristics.This research proposes a novel rotary direct drive servovalve,which can reduce the flow forces effectively.展开更多
The objective of this paper is to investigate the unsteady cavitation behaviors and the corresponding cavitating flow-induced vibrations. Results are presented for the modified NACA66 hydrofoils made of stainless stee...The objective of this paper is to investigate the unsteady cavitation behaviors and the corresponding cavitating flow-induced vibrations. Results are presented for the modified NACA66 hydrofoils made of stainless steel and POM Polyacetate respectively at Re= 6.0×105for various cavitation regimes. The high-speed camera and the single point laser Doppler vibrometer(LDV) are used to observe the transient cavitating flow patterns and measure the vibration velocities. The results showed that the vibration amplitude increases dramatically for the cloud cavitation due to the development of large-scale cloud cavity. The main flow-induced frequencies, which are in accordance with the cavity shedding frequency, decrease with the decrease of the cavitation number. As for the effect of the hydroelastic response on the vibration behavior, the lift coefficient for the POM Polyacetate hydrofoil fluctuates more significantly with a larger mean value than that for the stainless steel hydrofoil. Compared with the vaporous cavity along the suction side of the stainless steel hydrofoil, the cavity for POM Polyacetate hydrofoil appears to be fragmentized. The main vibration frequencies for the POM Polyacetate hydrofoil are larger than that for the stainless steel hydrofoil, with the chaotic hydroelastic response with high frequency.展开更多
BACKGROUND: Mechanical ventilation is a double-edged sword to acute respiratory distress syndrome (ARDS) including lung injury, and systemic inflammatory response high tidal volumes are thought to increase mortalit...BACKGROUND: Mechanical ventilation is a double-edged sword to acute respiratory distress syndrome (ARDS) including lung injury, and systemic inflammatory response high tidal volumes are thought to increase mortality. The objective of this study is to evaluate the effects of dynamic ventilatory factors on ventilator induced lung injury in a dog model of ARDS induced by hydrochloric acid instillation under volume controlled ventilation and to investigate the relationship between the dynamic factors and ventilator-induced lung injuries (VILI) and to explore its potential mechanisms.METHODS: Thirty-six healthy dogs were randomly divided into a control group and an experimental group. Subjects in the experimental group were then further divided into four groups by different inspiratory stages of flow. Two mL of alveolar fluid was aspirated for detection of IL-8 and TNF-α. Lung tissue specimens were also extracted for total RNA, IL-8 by western blot and observed under an electronic microscope.RESULTS: IL-8 protein expression was significantly higher in group B than in groups A and D. Although the IL-8 protein expression was decreased in group C compared with group B, the difference was not statistically significant. The TNF-a ray degree of group B was significantly higher than that in the other groups (P〈0.01), especially in group C (P〉0.05). The alveolar volume of subjects in group B was significantly smaller, and cavity infiltration and cell autolysis were marked with a significant thicker alveolar septa, disorder of interval structures, and blurring of collagenous and elastic fiber structures. A large number of necrotic debris tissue was observed in group B.CONCLUSION: Mechanical ventilation with a large tidal volume, a high inspiratory flow and a high ventilation frequency can cause significant damage to lung tissue structure. It can significantly increase the expression of TNF-α and IL-8 as well as their mRNA expression. Furthermore, the results of our study showed that small tidal ve展开更多
The noise induced by the fluctuant saturated steam flow under 250 °C in a stop-valve was numerically studied.The simulation was carried out using computational fluid dynamics(CFD) and ACTRAN.The acoustic field ...The noise induced by the fluctuant saturated steam flow under 250 °C in a stop-valve was numerically studied.The simulation was carried out using computational fluid dynamics(CFD) and ACTRAN.The acoustic field was investigated with Lighthill's acoustic analogy based on the properties of the flow field obtained using a large-eddy simulation that employs the LES-WALE dynamic model as the sub-grid-scale model.Firstly,the validation of mesh was well conducted,illustrating that two million elements were sufficient in this situation.Secondly,the treatment of the steam was deliberated,and conclusions indicate that when predicting the flow-induced noise of the stop-valve,the steam can be treated as incompressible gas at a low inlet velocity.Thirdly,the flow-induced noises under different inlet velocities were compared.The findings reveal it has remarkable influence on the flow-induced noises.Lastly,whether or not the heat preservation of the wall has influence on the noise was taken into account.The results show that heat preservation of the wall had little influence.展开更多
The Coanda effect has long been employed in the aerospace applications to improve the performances of various devices. This effect is the ability of a flow to follow a curved contour without separation and has well be...The Coanda effect has long been employed in the aerospace applications to improve the performances of various devices. This effect is the ability of a flow to follow a curved contour without separation and has well been utilized in ejectors where a high speed jet of fluid emerges from a nozzle in the ejector body, follows a curved surface and drags the secondary flow into the ejector. In Coanda ejectors, the secondary flow is dragged in the ejector due to the primary flow momentum. The transfer of momentum from the primary flow to the secondary flow takes place through turbulent mixing and viscous effects. The secondary flow is then dragged by turbulent shear force of the ejector while being mixed with the primary flow by the persistence of a large turbulent intensity throughout the ejector. The performance of a Coanda ejector is studied mainly based on how well it drags the secondary flow and the amount of mixing between the two flows at the ejector exit. The aim of the present study is to investigate the influence of various geometric parameters and pressure ratios on the Coanda ejector performance. The effect of various factors, such as, the pressure ratio, primary nozzle and ejector configurations on the system performance has been evaluated based on a performance parameter defined elsewhere. The performance of the Coanda ejector strongly depends on the primary nozzle configuration and the pressure ratio. The mixing layer growth plays a major role in optimizing the performance of the Coanda ejector as it decides the ratio of secondary mass flow rate to primary mass flow rate and the mixing length.展开更多
Pipe-in-pipe(PIP)structures are widely used in offshore oil and gas pipelines to settle thermal insulation issues.A PIP structure system usually consists of two concentric pipes and one softer layer for thermal insula...Pipe-in-pipe(PIP)structures are widely used in offshore oil and gas pipelines to settle thermal insulation issues.A PIP structure system usually consists of two concentric pipes and one softer layer for thermal insulation consideration.The total response of the system is related to the dynamics of both pipes and the interactions between these two concentric pipes.In the current work,a theoretical model for flow-induced vibrations of a PIP structure system is proposed and analyzed in the presence of an internal axial flow and an external cross flow.The interactions between the two pipes are modeled by a linear distributed damper,a linear distributed spring and a nonlinear distributed spring along the pipe length.The unsteady hydrodynamic forces due to cross flow are modeled by two distributed van der Pol wake oscillators.The nonlinear partial differential equations for the two pipes and the wake are further discretized by the aid of Galerkin’s technique,resulting in a set of ordinary differential equations.These ordinary differential equations are further numeri cally solved by using a fourth-order Runge-Kutta integration algorithm.Phase portraits,bifurcation diagrams,an Argand diagram and oscillation shape diagrams are plotted,showing the existence of a lock-in phenomenon and figure-of-eight trajectory.The PIP system subjected to cross flow displays some interesting dynamical behaviors different from that of a single-pipe structure.展开更多
The application of mathematical modeling to biological fluids is of utmost importance, as it has diverse applicationsin medicine. The peristaltic mechanism plays a crucial role in understanding numerous biological flo...The application of mathematical modeling to biological fluids is of utmost importance, as it has diverse applicationsin medicine. The peristaltic mechanism plays a crucial role in understanding numerous biological flows. In thispaper, we present a theoretical investigation of the double diffusion convection in the peristaltic transport of aPrandtl nanofluid through an asymmetric tapered channel under the combined action of thermal radiation andan induced magnetic field. The equations for the current flow scenario are developed, incorporating relevantassumptions, and considering the effect of viscous dissipation. The impact of thermal radiation and doublediffusion on public health is of particular interest. For instance, infrared radiation techniques have been used totreat various skin-related diseases and can also be employed as a measure of thermotherapy for some bones toenhance blood circulation, with radiation increasing blood flow by approximately 80%. To solve the governingequations, we employ a numerical method with the aid of symbolic software such as Mathematica and MATLAB.The velocity, magnetic force function, pressure rise, temperature, solute (species) concentration, and nanoparticlevolume fraction profiles are analytically derived and graphically displayed. The results outcomes are compared withthe findings of limiting situations for verification.展开更多
The effect of a guide vane installed at the elbow on flow-induced noise and vibration is investigated in the range of Reynolds numbers from 1.70×10^5 to 6.81×10^5, and the position of guide vane is determine...The effect of a guide vane installed at the elbow on flow-induced noise and vibration is investigated in the range of Reynolds numbers from 1.70×10^5 to 6.81×10^5, and the position of guide vane is determined by publications. The turbulent flow in the piping elbow is simulated with large eddy simulation (LES). Following this, a hybrid method of combining LES and Lighthill's acoustic analogy theory is used to simulate the hydrodynamic noise and sound sources are solved as volume sources in code Actran. In addition, the flow-induced vibration of the piping elbow is investigated based on a fluid-structure interaction (FSI) code. The LES results indicate that the range of vortex zone in the elbow without the guide vane is larger than the case with the guide vane, and the guide vane is effective in reducing flow-induced noise and vibration in the 90° piping elbow at different Reynolds numbers.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.11872250)the National Basic Research and Development Program of China(973 Program,Grant No.2015CB251203)the National Major Science and Technology Specific Project of China(Grant No.2016ZX05028-001).
文摘As a fundamental fluid-structure interaction(FSI)phenomenon,vortex-induced vibrations(VIVs)of circular cylinders have been the center of the FSI research in the past several decades.Apart from its scientific significance in rich physics,VIVs are paid great attentions by offshore engineers,as they are encountered in many ocean engineering applications.Recently,with the development of research and application,wake-induced vibration(WIV)for multiple cylinders and galloping for VIV suppression attachments are attracting a growing research interest.All these phenomena are connected with the flow-induced vibration(FIV).In this paper,we review and give some discussions on the FIV of offshore circular cylinders,including the research progress on the basic VIV mechanism of an isolated rigid or flexible cylinder,interference of multiple cylinders concerning WIV of multiple cylinders,practical VIV suppression and unwanted galloping for cylinder of attachments.Finally,we draw concluding remarks,give some comments and propose future research prospects,especially on the major challenges as well as potentials in the offline/online modelling and prediction of real-scale offshore structures with high-fidelity CFD methods,new experimental facilities and applications of artificial intelligence tools.
基金supported by the National High Technology Research and Development Program of China(863 Program,Grant No.2006AA09Z356 and No.2007AA09Z313)
文摘In consideration of the effect of the internal flowing fluid and the external marine environmental condition on the vortex-induced vibration (VIV) of top tensioned riser (Till), the differential equation is derived based on work-energy principles and the riser near wake dynamics is modeled by Facchinetti' s wake oscillator model. Then Galerkin' s finite element approximation is implemented to derive the nonlinear matrix equation of the coupled equations and file corresponding numerical programs are compiled which solve the coupled equations directly in the time domain. The comparison of the predicted results with the recent experimental results and the prediction of SHEAR7 is performed. The results show the validity of the proposed method on the prediction of VIV of deep water risers. The effect of internal flow on the dynamic characteristics and dynmnic response of the riser is analyzed and several valuable conelusions are drawn.
基金Supported by National Natural Science Foundation of China(Grant No.51375363)Xi’an Municipal Science and Technology Planning Project of China(Grant No.CX12504)Guangdong Provincial Key Technology Project on Emerging Industries of Strategic Importance of China(Grant No.2012A090100010)
文摘Direct drive servovalves are mostly restricted to low flow rate and low bandwidth applications due to the considerable flow forces.Current studies mainly focus on enhancing the driving force,which in turn is limited to the development of the magnetic material.Aiming at reducing the flow forces,a novel rotary direct drive servovalve(RDDV)is introduced in this paper.This RDDV servovalve is designed in a rotating structure and its axially symmetric spool rotates within a certain angle range in the valve chamber.The servovalve orifices are formed by the matching between the square wave shaped land on the spool and the rectangular ports on the sleeve.In order to study the RDDV servovalve performance,flow rate model and mechanical model are established,wherein flow rates and flow induced torques at different spool rotation angles or spool radiuses are obtained.The model analysis shows that the driving torque can be alleviated due to the proposed valve structure.Computational fluid dynamics(CFD)analysis using ANSYS/FLUENT is applied to evaluate and validate the theoretical analysis.In addition,experiments on the flow rate and the mechanical characteristic of the RDDV servovalve are carried out.Both simulation and experimental results conform to the results of the theoretical model analysis,which proves that this novel and innovative structure for direct drive servovalves can reduce the flow force on the spool and improve valve frequency response characteristics.This research proposes a novel rotary direct drive servovalve,which can reduce the flow forces effectively.
基金Project supported by the the National Natural Science Foundation of China(Grant Nos.51679005,91752105)
文摘The objective of this paper is to investigate the unsteady cavitation behaviors and the corresponding cavitating flow-induced vibrations. Results are presented for the modified NACA66 hydrofoils made of stainless steel and POM Polyacetate respectively at Re= 6.0×105for various cavitation regimes. The high-speed camera and the single point laser Doppler vibrometer(LDV) are used to observe the transient cavitating flow patterns and measure the vibration velocities. The results showed that the vibration amplitude increases dramatically for the cloud cavitation due to the development of large-scale cloud cavity. The main flow-induced frequencies, which are in accordance with the cavity shedding frequency, decrease with the decrease of the cavitation number. As for the effect of the hydroelastic response on the vibration behavior, the lift coefficient for the POM Polyacetate hydrofoil fluctuates more significantly with a larger mean value than that for the stainless steel hydrofoil. Compared with the vaporous cavity along the suction side of the stainless steel hydrofoil, the cavity for POM Polyacetate hydrofoil appears to be fragmentized. The main vibration frequencies for the POM Polyacetate hydrofoil are larger than that for the stainless steel hydrofoil, with the chaotic hydroelastic response with high frequency.
基金supported by grants from the Shanghai Health Bureau issues(2007102)
文摘BACKGROUND: Mechanical ventilation is a double-edged sword to acute respiratory distress syndrome (ARDS) including lung injury, and systemic inflammatory response high tidal volumes are thought to increase mortality. The objective of this study is to evaluate the effects of dynamic ventilatory factors on ventilator induced lung injury in a dog model of ARDS induced by hydrochloric acid instillation under volume controlled ventilation and to investigate the relationship between the dynamic factors and ventilator-induced lung injuries (VILI) and to explore its potential mechanisms.METHODS: Thirty-six healthy dogs were randomly divided into a control group and an experimental group. Subjects in the experimental group were then further divided into four groups by different inspiratory stages of flow. Two mL of alveolar fluid was aspirated for detection of IL-8 and TNF-α. Lung tissue specimens were also extracted for total RNA, IL-8 by western blot and observed under an electronic microscope.RESULTS: IL-8 protein expression was significantly higher in group B than in groups A and D. Although the IL-8 protein expression was decreased in group C compared with group B, the difference was not statistically significant. The TNF-a ray degree of group B was significantly higher than that in the other groups (P〈0.01), especially in group C (P〉0.05). The alveolar volume of subjects in group B was significantly smaller, and cavity infiltration and cell autolysis were marked with a significant thicker alveolar septa, disorder of interval structures, and blurring of collagenous and elastic fiber structures. A large number of necrotic debris tissue was observed in group B.CONCLUSION: Mechanical ventilation with a large tidal volume, a high inspiratory flow and a high ventilation frequency can cause significant damage to lung tissue structure. It can significantly increase the expression of TNF-α and IL-8 as well as their mRNA expression. Furthermore, the results of our study showed that small tidal ve
文摘The noise induced by the fluctuant saturated steam flow under 250 °C in a stop-valve was numerically studied.The simulation was carried out using computational fluid dynamics(CFD) and ACTRAN.The acoustic field was investigated with Lighthill's acoustic analogy based on the properties of the flow field obtained using a large-eddy simulation that employs the LES-WALE dynamic model as the sub-grid-scale model.Firstly,the validation of mesh was well conducted,illustrating that two million elements were sufficient in this situation.Secondly,the treatment of the steam was deliberated,and conclusions indicate that when predicting the flow-induced noise of the stop-valve,the steam can be treated as incompressible gas at a low inlet velocity.Thirdly,the flow-induced noises under different inlet velocities were compared.The findings reveal it has remarkable influence on the flow-induced noises.Lastly,whether or not the heat preservation of the wall has influence on the noise was taken into account.The results show that heat preservation of the wall had little influence.
文摘The Coanda effect has long been employed in the aerospace applications to improve the performances of various devices. This effect is the ability of a flow to follow a curved contour without separation and has well been utilized in ejectors where a high speed jet of fluid emerges from a nozzle in the ejector body, follows a curved surface and drags the secondary flow into the ejector. In Coanda ejectors, the secondary flow is dragged in the ejector due to the primary flow momentum. The transfer of momentum from the primary flow to the secondary flow takes place through turbulent mixing and viscous effects. The secondary flow is then dragged by turbulent shear force of the ejector while being mixed with the primary flow by the persistence of a large turbulent intensity throughout the ejector. The performance of a Coanda ejector is studied mainly based on how well it drags the secondary flow and the amount of mixing between the two flows at the ejector exit. The aim of the present study is to investigate the influence of various geometric parameters and pressure ratios on the Coanda ejector performance. The effect of various factors, such as, the pressure ratio, primary nozzle and ejector configurations on the system performance has been evaluated based on a performance parameter defined elsewhere. The performance of the Coanda ejector strongly depends on the primary nozzle configuration and the pressure ratio. The mixing layer growth plays a major role in optimizing the performance of the Coanda ejector as it decides the ratio of secondary mass flow rate to primary mass flow rate and the mixing length.
基金The work was supported by the National Natural Science Foundation of China(Grant 11622216).
文摘Pipe-in-pipe(PIP)structures are widely used in offshore oil and gas pipelines to settle thermal insulation issues.A PIP structure system usually consists of two concentric pipes and one softer layer for thermal insulation consideration.The total response of the system is related to the dynamics of both pipes and the interactions between these two concentric pipes.In the current work,a theoretical model for flow-induced vibrations of a PIP structure system is proposed and analyzed in the presence of an internal axial flow and an external cross flow.The interactions between the two pipes are modeled by a linear distributed damper,a linear distributed spring and a nonlinear distributed spring along the pipe length.The unsteady hydrodynamic forces due to cross flow are modeled by two distributed van der Pol wake oscillators.The nonlinear partial differential equations for the two pipes and the wake are further discretized by the aid of Galerkin’s technique,resulting in a set of ordinary differential equations.These ordinary differential equations are further numeri cally solved by using a fourth-order Runge-Kutta integration algorithm.Phase portraits,bifurcation diagrams,an Argand diagram and oscillation shape diagrams are plotted,showing the existence of a lock-in phenomenon and figure-of-eight trajectory.The PIP system subjected to cross flow displays some interesting dynamical behaviors different from that of a single-pipe structure.
基金Institutional Fund Projects under No.(IFP-A-2022-2-5-24)by Ministry of Education and University of Hafr Al Batin,Saudi Arabia.
文摘The application of mathematical modeling to biological fluids is of utmost importance, as it has diverse applicationsin medicine. The peristaltic mechanism plays a crucial role in understanding numerous biological flows. In thispaper, we present a theoretical investigation of the double diffusion convection in the peristaltic transport of aPrandtl nanofluid through an asymmetric tapered channel under the combined action of thermal radiation andan induced magnetic field. The equations for the current flow scenario are developed, incorporating relevantassumptions, and considering the effect of viscous dissipation. The impact of thermal radiation and doublediffusion on public health is of particular interest. For instance, infrared radiation techniques have been used totreat various skin-related diseases and can also be employed as a measure of thermotherapy for some bones toenhance blood circulation, with radiation increasing blood flow by approximately 80%. To solve the governingequations, we employ a numerical method with the aid of symbolic software such as Mathematica and MATLAB.The velocity, magnetic force function, pressure rise, temperature, solute (species) concentration, and nanoparticlevolume fraction profiles are analytically derived and graphically displayed. The results outcomes are compared withthe findings of limiting situations for verification.
基金Supported by the Independent Innovation Foundation for National Defense of Huazhong University of Science and Technology(No.01-18-140019)
文摘The effect of a guide vane installed at the elbow on flow-induced noise and vibration is investigated in the range of Reynolds numbers from 1.70×10^5 to 6.81×10^5, and the position of guide vane is determined by publications. The turbulent flow in the piping elbow is simulated with large eddy simulation (LES). Following this, a hybrid method of combining LES and Lighthill's acoustic analogy theory is used to simulate the hydrodynamic noise and sound sources are solved as volume sources in code Actran. In addition, the flow-induced vibration of the piping elbow is investigated based on a fluid-structure interaction (FSI) code. The LES results indicate that the range of vortex zone in the elbow without the guide vane is larger than the case with the guide vane, and the guide vane is effective in reducing flow-induced noise and vibration in the 90° piping elbow at different Reynolds numbers.