Degradation of the Indigo Carmine(IC) by the bipolar pulsed DBD in water-air mixture was studied. Effects of various parameters such as gas flow rate, solution conductivity, pulse repetitive rate and ect., on color re...Degradation of the Indigo Carmine(IC) by the bipolar pulsed DBD in water-air mixture was studied. Effects of various parameters such as gas flow rate, solution conductivity, pulse repetitive rate and ect., on color removal efficiency of dying wastewater were investigated. Concentrations of gas phase O 3 and aqueous phase H 2O 2 under various conditions were measured. Experimental results showed that air bubbling facilitates the breakdown of water and promotes generation of chemically active species. Color removal efficiency of IC solution can be greatly improved by the air aeration under various solution conductivities. Decolorization efficiency increases with the increase of the gas flow rate, and decreases with the increase of the initial solution conductivity. A higher pulse repetitive rate and a larger pulse capacitor C\-p are favorable for the decolorization process. Ozone and hydrogen peroxide formed decreases with the increase of initial solution conductivity. In addition, preliminary analysis of the decolorization mechanisms is given.展开更多
文摘Degradation of the Indigo Carmine(IC) by the bipolar pulsed DBD in water-air mixture was studied. Effects of various parameters such as gas flow rate, solution conductivity, pulse repetitive rate and ect., on color removal efficiency of dying wastewater were investigated. Concentrations of gas phase O 3 and aqueous phase H 2O 2 under various conditions were measured. Experimental results showed that air bubbling facilitates the breakdown of water and promotes generation of chemically active species. Color removal efficiency of IC solution can be greatly improved by the air aeration under various solution conductivities. Decolorization efficiency increases with the increase of the gas flow rate, and decreases with the increase of the initial solution conductivity. A higher pulse repetitive rate and a larger pulse capacitor C\-p are favorable for the decolorization process. Ozone and hydrogen peroxide formed decreases with the increase of initial solution conductivity. In addition, preliminary analysis of the decolorization mechanisms is given.