A stability indicating LC method was developed for the simultaneous determination of Amlodipine and Benazepril capsules in pharmaceutical dosage form. Efficient chromatographic separation was achieved on Symmetry C18 ...A stability indicating LC method was developed for the simultaneous determination of Amlodipine and Benazepril capsules in pharmaceutical dosage form. Efficient chromatographic separation was achieved on Symmetry C18 stationary phase with simple combination of amobile phase containing 750 mL of DI Water, 250 mL of Acetonitrile and 2 mL of Octylamine into suitable container with adjusted pH to 2.50 ± 0.05 with the aid of Ortho phosphoric acid delivered in an isocratic mode and quantification was carried out using UV detection at 240 nm at a flow rate of 1.0 mL·min-1 with an injection volume of 20 μl and ambient column temperature. This method is capable to detect both the drug components of Amlodipine and Benazepril in presence of their degradation products (Amlodipine Imp-A and Benazepril Impurity-C) with a detection level of 0.05%. Amlodipine/Benazepril in their combination drug product were exposed to thermal, photolytic, hydrolytic and oxidative stress conditions, and the samples were analysed. Peak homogeneity data of Amlodipine and Benazeprilis were obtained using PDA detector, in the stressed sample chromatograms, demonstrating the specificity. The method shows excellent linearity over a range of 0.05%-2.0% for Amlodipine, Amlodipine Impurity-A and 0.05%-5.0% for Benazepril and Benazepril Impurity-C. The correlation coefficient for Amlodipine and Benazepril is 1. The relative standard deviation was always less than 2%. The proposed method was found to be suitable and accurate for quantitative determination and the stability study of Amlodipine and Benazepril in pharmaceutical preparations. The developed HPLC method was validated with respect to linearity & range, accuracy, precision and robustness.展开更多
The research was carried out to establish a new reverse phase-HPLC stability indicating method for quantifying Bimatoprost & Timolol in ophthalmic solution. The experiment of Bimatoprost & Timolol in ophthalmi...The research was carried out to establish a new reverse phase-HPLC stability indicating method for quantifying Bimatoprost & Timolol in ophthalmic solution. The experiment of Bimatoprost & Timolol in ophthalmic solution method development was determined on Waters HPLC instrument using a UV Detector. The separation was done by using L11, Zorbex SB phenyl (4.6 mm × 250 mm internal diameter) 5 μm analytical column, containing mobile phase of Phosphate buffer (0.02 M), methanol, and acetonitrile [50:30:20 % v/v]. The method was run at 1 ml·min<sup>-1</sup> at 210 nm for Bimatoprost and 295 nm for Timolol for detection. The drug was eluted at 10.81 min for Bimatoprost and 3.77 min for Timolol. After developing the method, it was assured for the intended use by validation, which was done according to ICH Q2B guidelines. The analytical parameters checked were Specificity/Selectivity, linearity, Range, accuracy, ruggedness, and robustness. It was observed that the response of the detector was linear in the range of 6 - 18 μg/ml with a correlation coefficient of 0.999. The results of all the parameters were found to be within the acceptance criteria. The stability-indicating assay method was established by using the samples generated by the forced degradation process. The forced degradation was carried out by subjecting the drug to acid, alkali, thermal, oxidative, and photolytic degradation, and the results showed that the degradation products were successfully separated from the drug. Hence, this can be applied perfectly later for the quantitative analysis of Bimatoprost 0.3% + Timolol 0.5% Ophthalmic Solution drugs for pharmaceutical use. Currently, there is no official method for Bimatoprost & Timolol combination products in USP or BP. Available research work related to single Bimatoprost or Timolol products was not suitable for testing Bimatoprost and Timolol combination drugs. Additionally, there is no stability-indicating method to test Bimatoprost & Timolol combination products which insist us to do research a展开更多
A lock solution composed of gentamicin sulfate(5 mg/mL) and ethylenediaminetetraacetic acid disodium salt(EDTA-Na2, 30 mg/mL) could fully eradicate in vivo bacterial biofilms in totally implantable venous access ports...A lock solution composed of gentamicin sulfate(5 mg/mL) and ethylenediaminetetraacetic acid disodium salt(EDTA-Na2, 30 mg/mL) could fully eradicate in vivo bacterial biofilms in totally implantable venous access ports(TIVAP). In this study, fabrication, conditioning and sterilization processes of antimicrobial lock solution(ALS) were detailed and completed by a stability study. Stability of ALS was conducted for12 months in vial(25 °C 7 2 °C, 60% 7 5% relative humidity(RH), and at 40 °C 7 2 °C, RH 75% 7 5%)and for 24 h and 72 h in TIVAP(40 °C 7 2 °C, RH 75% 7 5%). A stability indicating HPLC assay with UV detection for simultaneous quantification of gentamicin sulfate and EDTA-Na2 was developed. ALS was assayed by ion-pairing high performance liquid chromatography(HPLC) needing gentamicin derivatization, EDTA-Na2 metallocomplexation of samples and gradient mobile phase. HPLC methods to separate four gentamicin components and EDTA-Na2 were validated. Efficiency of sterility procedure and conditioning of ALS was confirmed by bacterial endotoxins and sterility tests. Physicochemical stability of ALS was determined by visual inspection, osmolality, pH, and sub-visible particle counting. Results confirmed that the stability of ALS in vials was maintained for 12 months and 24 h and 72 h in TIVAP.展开更多
A new institutional clinical trial assessed the improvement of sleep disorders in 40 children with autism treated by immediate-release melatonin formulation in different regimens(0.5 mg, 2 mg, and 6 mg daily) for one ...A new institutional clinical trial assessed the improvement of sleep disorders in 40 children with autism treated by immediate-release melatonin formulation in different regimens(0.5 mg, 2 mg, and 6 mg daily) for one month. The objectives of present study were to(i) prepare low-dose melatonin hard capsules for pediatric use controlled by two complementary methods and(ii) carry out a stability study in order to determine a use-bydate. Validation of preparation process was claimed as ascertained by mass uniformity of hard capsules.Multicomponent analysis by attenuated total reflectance Fourier transformed infrared(ATR-FTIR) of melatonin/microcrystalline cellulose mixture allowed to identify and quantify relative content of active pharmaceutical ingredients and excipients. Absolute melatonin content analysis by high performance liquid chromatography in 0.5 mg and 6 mg melatonin capsules was 93.6% ± 4.1% and 98.7% ± 6.9% of theoretical value, respectively. Forced degradation study showed a good separation of melatonin and its degradation products. The capability of the method was 15, confirming a risk of false negative < 0.01%. Stability test and dissolution test were compliant over 18 months of storage with European Pharmacopoeia. Preparation of melatonin hard capsules was completed manually and melatonin in hard capsules was stable for 18 months, in spite of low doses of active ingredient. ATR-FTIR offers a real alternative to HPLC for quality control of highdose melatonin hard capsules before the release of clinical batches.展开更多
The stability of the drug actarit was studied under different stress conditions like hydrolysis(acid,alkaline and neutral),oxidation,photolysis and thermal degradation as recommended hy International Conference on H...The stability of the drug actarit was studied under different stress conditions like hydrolysis(acid,alkaline and neutral),oxidation,photolysis and thermal degradation as recommended hy International Conference on Harmonization(ICH) guidelines.Drug was found to be unstable in acidic,basic and photolytic conditions and produced a common degradation product while oxidative stress condition produced three additional degradation products.Drug was impassive to neutral hydrolysis,dry thermal and accelerated stability conditions.Degradation products were identified,isolated and characterized by different spectroscopic analyses.Drug and the degradation products were synthesized by a new route using green chemistry.The chromatographic separation of the drug and its impurities was achieved in a phenomenex luna C18 column employing a step gradient elution by high performance liquid chromatography coupled to photodiode array and mass spectrometry detectors(HPLC-PDAMS).A specilic and sensitive stability-indicating assay method for the simultaneous determination of the drug actarit.its process related impurities and degradation products was developed and validated.展开更多
Macitentan (MAC) is a pulmonary arterial hypertension (PAH) drug marketed as a tablet and often has stability issues in the final dosage form. Quantitative determination of MAC and its associated impurities in tablet ...Macitentan (MAC) is a pulmonary arterial hypertension (PAH) drug marketed as a tablet and often has stability issues in the final dosage form. Quantitative determination of MAC and its associated impurities in tablet dosage form has not been previously reported. This study quantified impurities present in Macitentan tablets using a binary solvent-based gradient elution method using reversed phase-high performance liquid chromatography.The developed method w as validated per International Conference on Harmonization (ICH) guidelines and the drug product w as subjected to forced degradation studies to evaluate stability. The developed method efficiently separated the drug and impurities (48 min) w ithout interference from solvents,excipients,or other impurities. The developed method met all guidelines in all characteristics w ith recoveries ranging from 85%-115%,linearity w ith r 2≥0. 996 6,and substantial robustness. The stability-indicating nature of the method w as evaluated using stressed conditions (hydrolysis:1 N HCl at 80℃/15 min; 1 N NaOH at 25℃/45 min; humidity stress (90%relative humidity) at 25℃for 24 h,oxidation:at 6%(v/v) H2O2,80℃/15 min,thermolysis:at105℃/16 h and photolysis:UV light at 200 Wh/m2; Fluorescent light at 1. 2 million luxh). Forced degradation experiments show ed that the developed method w as effective for impurity profiling. All stressed samples w ere assayed and mass balance w as> 96%. Forced degradation results indicated that MAC tablets w ere sensitive to hydrolysis (acid and alkali) and thermal conditions. The developed method is suitable for both assay and impurity determination,w hich is applicable to the pharmaceutical industry.展开更多
文摘A stability indicating LC method was developed for the simultaneous determination of Amlodipine and Benazepril capsules in pharmaceutical dosage form. Efficient chromatographic separation was achieved on Symmetry C18 stationary phase with simple combination of amobile phase containing 750 mL of DI Water, 250 mL of Acetonitrile and 2 mL of Octylamine into suitable container with adjusted pH to 2.50 ± 0.05 with the aid of Ortho phosphoric acid delivered in an isocratic mode and quantification was carried out using UV detection at 240 nm at a flow rate of 1.0 mL·min-1 with an injection volume of 20 μl and ambient column temperature. This method is capable to detect both the drug components of Amlodipine and Benazepril in presence of their degradation products (Amlodipine Imp-A and Benazepril Impurity-C) with a detection level of 0.05%. Amlodipine/Benazepril in their combination drug product were exposed to thermal, photolytic, hydrolytic and oxidative stress conditions, and the samples were analysed. Peak homogeneity data of Amlodipine and Benazeprilis were obtained using PDA detector, in the stressed sample chromatograms, demonstrating the specificity. The method shows excellent linearity over a range of 0.05%-2.0% for Amlodipine, Amlodipine Impurity-A and 0.05%-5.0% for Benazepril and Benazepril Impurity-C. The correlation coefficient for Amlodipine and Benazepril is 1. The relative standard deviation was always less than 2%. The proposed method was found to be suitable and accurate for quantitative determination and the stability study of Amlodipine and Benazepril in pharmaceutical preparations. The developed HPLC method was validated with respect to linearity & range, accuracy, precision and robustness.
文摘The research was carried out to establish a new reverse phase-HPLC stability indicating method for quantifying Bimatoprost & Timolol in ophthalmic solution. The experiment of Bimatoprost & Timolol in ophthalmic solution method development was determined on Waters HPLC instrument using a UV Detector. The separation was done by using L11, Zorbex SB phenyl (4.6 mm × 250 mm internal diameter) 5 μm analytical column, containing mobile phase of Phosphate buffer (0.02 M), methanol, and acetonitrile [50:30:20 % v/v]. The method was run at 1 ml·min<sup>-1</sup> at 210 nm for Bimatoprost and 295 nm for Timolol for detection. The drug was eluted at 10.81 min for Bimatoprost and 3.77 min for Timolol. After developing the method, it was assured for the intended use by validation, which was done according to ICH Q2B guidelines. The analytical parameters checked were Specificity/Selectivity, linearity, Range, accuracy, ruggedness, and robustness. It was observed that the response of the detector was linear in the range of 6 - 18 μg/ml with a correlation coefficient of 0.999. The results of all the parameters were found to be within the acceptance criteria. The stability-indicating assay method was established by using the samples generated by the forced degradation process. The forced degradation was carried out by subjecting the drug to acid, alkali, thermal, oxidative, and photolytic degradation, and the results showed that the degradation products were successfully separated from the drug. Hence, this can be applied perfectly later for the quantitative analysis of Bimatoprost 0.3% + Timolol 0.5% Ophthalmic Solution drugs for pharmaceutical use. Currently, there is no official method for Bimatoprost & Timolol combination products in USP or BP. Available research work related to single Bimatoprost or Timolol products was not suitable for testing Bimatoprost and Timolol combination drugs. Additionally, there is no stability-indicating method to test Bimatoprost & Timolol combination products which insist us to do research a
基金supported by Centre de Recherche Translationnelle de I'Institut Pasteur, grant Number S- PI15007-02Asupported by the French Government's Investissement d'Avenir program:Laboratoire d'Excellence ‘Integrative Biology of Emerging Infectious Diseases’ (grant no. ANR-10-LABX62-IBEID.)+1 种基金the Fondation pour la Recherche Médicale (grant no. DEQ. 20140329508)the Center for Translational Science of the Institut Pasteur (S-PI15007-02A)
文摘A lock solution composed of gentamicin sulfate(5 mg/mL) and ethylenediaminetetraacetic acid disodium salt(EDTA-Na2, 30 mg/mL) could fully eradicate in vivo bacterial biofilms in totally implantable venous access ports(TIVAP). In this study, fabrication, conditioning and sterilization processes of antimicrobial lock solution(ALS) were detailed and completed by a stability study. Stability of ALS was conducted for12 months in vial(25 °C 7 2 °C, 60% 7 5% relative humidity(RH), and at 40 °C 7 2 °C, RH 75% 7 5%)and for 24 h and 72 h in TIVAP(40 °C 7 2 °C, RH 75% 7 5%). A stability indicating HPLC assay with UV detection for simultaneous quantification of gentamicin sulfate and EDTA-Na2 was developed. ALS was assayed by ion-pairing high performance liquid chromatography(HPLC) needing gentamicin derivatization, EDTA-Na2 metallocomplexation of samples and gradient mobile phase. HPLC methods to separate four gentamicin components and EDTA-Na2 were validated. Efficiency of sterility procedure and conditioning of ALS was confirmed by bacterial endotoxins and sterility tests. Physicochemical stability of ALS was determined by visual inspection, osmolality, pH, and sub-visible particle counting. Results confirmed that the stability of ALS in vials was maintained for 12 months and 24 h and 72 h in TIVAP.
文摘A new institutional clinical trial assessed the improvement of sleep disorders in 40 children with autism treated by immediate-release melatonin formulation in different regimens(0.5 mg, 2 mg, and 6 mg daily) for one month. The objectives of present study were to(i) prepare low-dose melatonin hard capsules for pediatric use controlled by two complementary methods and(ii) carry out a stability study in order to determine a use-bydate. Validation of preparation process was claimed as ascertained by mass uniformity of hard capsules.Multicomponent analysis by attenuated total reflectance Fourier transformed infrared(ATR-FTIR) of melatonin/microcrystalline cellulose mixture allowed to identify and quantify relative content of active pharmaceutical ingredients and excipients. Absolute melatonin content analysis by high performance liquid chromatography in 0.5 mg and 6 mg melatonin capsules was 93.6% ± 4.1% and 98.7% ± 6.9% of theoretical value, respectively. Forced degradation study showed a good separation of melatonin and its degradation products. The capability of the method was 15, confirming a risk of false negative < 0.01%. Stability test and dissolution test were compliant over 18 months of storage with European Pharmacopoeia. Preparation of melatonin hard capsules was completed manually and melatonin in hard capsules was stable for 18 months, in spite of low doses of active ingredient. ATR-FTIR offers a real alternative to HPLC for quality control of highdose melatonin hard capsules before the release of clinical batches.
文摘The stability of the drug actarit was studied under different stress conditions like hydrolysis(acid,alkaline and neutral),oxidation,photolysis and thermal degradation as recommended hy International Conference on Harmonization(ICH) guidelines.Drug was found to be unstable in acidic,basic and photolytic conditions and produced a common degradation product while oxidative stress condition produced three additional degradation products.Drug was impassive to neutral hydrolysis,dry thermal and accelerated stability conditions.Degradation products were identified,isolated and characterized by different spectroscopic analyses.Drug and the degradation products were synthesized by a new route using green chemistry.The chromatographic separation of the drug and its impurities was achieved in a phenomenex luna C18 column employing a step gradient elution by high performance liquid chromatography coupled to photodiode array and mass spectrometry detectors(HPLC-PDAMS).A specilic and sensitive stability-indicating assay method for the simultaneous determination of the drug actarit.its process related impurities and degradation products was developed and validated.
基金the management of Sinotherapeutics Inc. for supporting this study
文摘Macitentan (MAC) is a pulmonary arterial hypertension (PAH) drug marketed as a tablet and often has stability issues in the final dosage form. Quantitative determination of MAC and its associated impurities in tablet dosage form has not been previously reported. This study quantified impurities present in Macitentan tablets using a binary solvent-based gradient elution method using reversed phase-high performance liquid chromatography.The developed method w as validated per International Conference on Harmonization (ICH) guidelines and the drug product w as subjected to forced degradation studies to evaluate stability. The developed method efficiently separated the drug and impurities (48 min) w ithout interference from solvents,excipients,or other impurities. The developed method met all guidelines in all characteristics w ith recoveries ranging from 85%-115%,linearity w ith r 2≥0. 996 6,and substantial robustness. The stability-indicating nature of the method w as evaluated using stressed conditions (hydrolysis:1 N HCl at 80℃/15 min; 1 N NaOH at 25℃/45 min; humidity stress (90%relative humidity) at 25℃for 24 h,oxidation:at 6%(v/v) H2O2,80℃/15 min,thermolysis:at105℃/16 h and photolysis:UV light at 200 Wh/m2; Fluorescent light at 1. 2 million luxh). Forced degradation experiments show ed that the developed method w as effective for impurity profiling. All stressed samples w ere assayed and mass balance w as> 96%. Forced degradation results indicated that MAC tablets w ere sensitive to hydrolysis (acid and alkali) and thermal conditions. The developed method is suitable for both assay and impurity determination,w hich is applicable to the pharmaceutical industry.