Let ,4 and B be unital C*-algebras, and let J∈A,L∈B be Hermitian invertible elements. For every T∈A and S∈B, define T^+J=J^-1T*J and ,S^+L=^L-1,S*L. Then in such a way we endow the C*-algebras A and B with i...Let ,4 and B be unital C*-algebras, and let J∈A,L∈B be Hermitian invertible elements. For every T∈A and S∈B, define T^+J=J^-1T*J and ,S^+L=^L-1,S*L. Then in such a way we endow the C*-algebras A and B with indefinite structures. We characterize firstly the Jordan (J, L)+homomorphisms on C*-algebras. As applications, we further classify the bounded linear maps Ф: A →B preserving (J, L)-unitary elements. When ,4 = B(H) and B=B(K), where H and K are infinite dimensional and complete indefinite inner product spaces on real or complex fields, we prove that indefinite-unitary preserving bounded linear surjections are of the form T→UVTV^-1 (任意T∈B(H)) or T→UVT^+V^-1(任意T∈B(H)), where U∈B(K) is indefinite unitary and, V : H→ K is generalized indefinite unitary in the first form and generalized indefinite anti-unitary in the second one. Some results on indefinite orthogonality preserving additive maps are also given.展开更多
基金The NNSF (10471082) of Chinathe YSF (20031009) of Shanxi ProvinceTsinghua Basic Research Foundation
文摘Let ,4 and B be unital C*-algebras, and let J∈A,L∈B be Hermitian invertible elements. For every T∈A and S∈B, define T^+J=J^-1T*J and ,S^+L=^L-1,S*L. Then in such a way we endow the C*-algebras A and B with indefinite structures. We characterize firstly the Jordan (J, L)+homomorphisms on C*-algebras. As applications, we further classify the bounded linear maps Ф: A →B preserving (J, L)-unitary elements. When ,4 = B(H) and B=B(K), where H and K are infinite dimensional and complete indefinite inner product spaces on real or complex fields, we prove that indefinite-unitary preserving bounded linear surjections are of the form T→UVTV^-1 (任意T∈B(H)) or T→UVT^+V^-1(任意T∈B(H)), where U∈B(K) is indefinite unitary and, V : H→ K is generalized indefinite unitary in the first form and generalized indefinite anti-unitary in the second one. Some results on indefinite orthogonality preserving additive maps are also given.