The electromagnetic field under applied AC and DC current in round and rectangular pipe was systematically investigated, then a concept of 'equivalent current density' was proposed for evaluating the inhomogen...The electromagnetic field under applied AC and DC current in round and rectangular pipe was systematically investigated, then a concept of 'equivalent current density' was proposed for evaluating the inhomogeneous electromagnetic pinch force, and the mono-component removal efficiency and the overall removal efficiency of inclusion were formulated. It is founded that flat pipe is superior to round pipe for the electromagnetic removal of inclusion, and DC current can get a higher removal efficiency than A C current due to absence of skin phenomenon. Under usual condition, a removal efficiency of 52% for 10μm inclusion or more than 92% for 20μm inclusion can be achieved by imposing a current density of 3×106A/m2 in a flat pipe.展开更多
A novel scheme about the continuous electromagnetic purification of aluminum melt was put forward based on the utilization of a square separation pipe and a 50 Hz alternating current to produce electromagnetic force. ...A novel scheme about the continuous electromagnetic purification of aluminum melt was put forward based on the utilization of a square separation pipe and a 50 Hz alternating current to produce electromagnetic force. It is experimentally found that with electrical current of 400 A/cm2, it takes only 10 s to remove 95% inclusion from aluminum melt. Comprehensive numerical simulations were carried out to investigate the dynamics mechanisms behind the process. The results show that the removal of inclusion is attributed to the cooperative effects of electromagnetic buoyancy and the secondary flow induced by the rotational electromagnetic force, and the removal efficient increases with the size of inclusion and the electrical current imposed. Theoretical predictions on the distribution and removal efficiency of inclusion were supported by the experiments.展开更多
Inclusion bodies(IBs)of respiratory syncytial virus(RSV)are formed by liquid-liquid phase separation(LLPS)and contain internal structures termed“IB-associated granules”(IBAGs),where anti-termination factor M2-1 and ...Inclusion bodies(IBs)of respiratory syncytial virus(RSV)are formed by liquid-liquid phase separation(LLPS)and contain internal structures termed“IB-associated granules”(IBAGs),where anti-termination factor M2-1 and viral mRNAs are concentrated.However,the mechanism of IBAG formation and the physiological function of IBAGs are unclear.Here,we found that the internal structures of RSV IBs are actual M2-1-free viral messenger ribonucleoprotein(mRNP)condensates formed by secondary LLPS.Mechanistically,the RSV nucleoprotein(N)and M2-1 interact with and recruit PABP to IBs,promoting PABP to bind viral mRNAs transcribed in IBs by RNArecognition motif and drive secondary phase separation.Furthermore,PABP-eIF4G1 interaction regulates viral mRNP condensate composition,thereby recruiting specific translation initiation factors(eIF4G1,eIF4E,eIF4A,eIF4B and eIF4H)into the secondary condensed phase to activate viral mRNAs for ribosomal recruitment.Our study proposes a novel LLPS-regulated translation mechanism during viral infection and a novel antiviral strategy via targeting on secondary condensed phase.展开更多
The transport of inclusion particles through the liquid metal/molten slag interface and their dissolution in the slag are two key processes of inclusion removal.Based on the latest version of inclusion transport model...The transport of inclusion particles through the liquid metal/molten slag interface and their dissolution in the slag are two key processes of inclusion removal.Based on the latest version of inclusion transport model that takes into account full Reynolds number range and a dissolution kinetics model,a coupled model was developed to simulate the whole process of inclusion removal,from floating in the liquid steel to crossing the interface and further to entering and dissolving in the molten slag.The interaction between the inclusion motion and dissolution was discussed.Even though the inclusion velocity is a key parameter for dissolution,the simulation results show no obvious dissolution during moving state because the process is too short and most of the inclusions dissolve during its static stay in the slag side above the interface.The rate-controlling step of inclusion removal is the transport through the steel-slag interface for the small-size inclusion and static dissolution above the interface for the large-size inclusion,respectively.展开更多
Various purification methods were explored to eliminate the dissolved hydrogen and nonmetallic inclusions from molten aluminum alloys. A novel rotating impeller head with self-oscillation nozzles or an electromagnetic...Various purification methods were explored to eliminate the dissolved hydrogen and nonmetallic inclusions from molten aluminum alloys. A novel rotating impeller head with self-oscillation nozzles or an electromagnetic valve in the gas circuit was used to produce pulse gas currents for the rotary impeller degassing method. Water simulation results show that the size of gas bubbles can be decreased by 10%20% as compared with the constant gas current mode. By coating ceramic filters or particles with active flux or enamels, composite filters were used to filter the scrap A356 alloy and pure aluminum. Experimental results demonstrate that better filtration efficiency and operation performance can be obtained. Based on numerical calculations, the separation efficiency of inclusions by high frequency magnetic field can be significantly improved by using a hollow cylinder-like separator or utilizing the effects of secondary flow of the melt in a square separator. A multi-stage and multi-media purification platform based on these methods was designed and applied in on-line processing of molten aluminum alloys. Mechanical properties of the processed scrap A356 alloy are greatly improved by the composite purification.展开更多
This paper reports on the selective transport of Lu(Ⅲ)from La(III)and Sm(III)through a polymer inclusion membrane(PIM)composed of 40 wt%di(2-ethylhexyl)phosphinic acid(P227)and 60 wt%poly(vinylidene fluoride)(PVDF).B...This paper reports on the selective transport of Lu(Ⅲ)from La(III)and Sm(III)through a polymer inclusion membrane(PIM)composed of 40 wt%di(2-ethylhexyl)phosphinic acid(P227)and 60 wt%poly(vinylidene fluoride)(PVDF).Basically,the changes in surface morphology,thickness and water contact angle of this PVDF-based PIM containing P227(P227@PVDF PIM)with different polymer concentrations were investigated.By solvent extraction experiments,it is found that Lu(Ⅲ)can be selectively extracted from La(Ⅲ)and Sm(Ⅲ)at pH 1.5 in hydrochloric acid solution.According to this result,P227@PVDF PIM was used to selectively transport Lu(Ⅲ)from hydrochloric acid feed solution containing similar concentration of La(Ⅲ)and Sm(Ⅲ).The recovery factor of Lu(III)is 91% after 36 h,and about 5%of Sm(Ⅲ)was also transported through the PIM.The concentration of La(III)in the feed solution and the stripping solution does not change.Furthermore,to overcome the ubiquitous decline of transport efficiency caused by the loss of carrier or the damage of membrane structure after long-term use of PIMs,a process for regenerating PIMs was first proposed and implemented.By comparison of the regenerated PIM with the normal PIM,there is almost no difference in the SEM image,ATR-FTIR spectrum and Lu(III)transport efficiency.It is expected that P227@PVDF PIMs have the potential to be applied to the grouped separation of rare earth elements(REEs),and this study also can be as an inspiration for the further study on the PIMs regeneration process.展开更多
文摘The electromagnetic field under applied AC and DC current in round and rectangular pipe was systematically investigated, then a concept of 'equivalent current density' was proposed for evaluating the inhomogeneous electromagnetic pinch force, and the mono-component removal efficiency and the overall removal efficiency of inclusion were formulated. It is founded that flat pipe is superior to round pipe for the electromagnetic removal of inclusion, and DC current can get a higher removal efficiency than A C current due to absence of skin phenomenon. Under usual condition, a removal efficiency of 52% for 10μm inclusion or more than 92% for 20μm inclusion can be achieved by imposing a current density of 3×106A/m2 in a flat pipe.
基金Project (50174037) supported by the National Natural Science Foundation of China Project (50225416) supported by the National Science Fund for Distinguish Young Scholars
文摘A novel scheme about the continuous electromagnetic purification of aluminum melt was put forward based on the utilization of a square separation pipe and a 50 Hz alternating current to produce electromagnetic force. It is experimentally found that with electrical current of 400 A/cm2, it takes only 10 s to remove 95% inclusion from aluminum melt. Comprehensive numerical simulations were carried out to investigate the dynamics mechanisms behind the process. The results show that the removal of inclusion is attributed to the cooperative effects of electromagnetic buoyancy and the secondary flow induced by the rotational electromagnetic force, and the removal efficient increases with the size of inclusion and the electrical current imposed. Theoretical predictions on the distribution and removal efficiency of inclusion were supported by the experiments.
基金supported by the grants from National Key R&D Program of China(2021YFC2300702 and 2021YFC2300200)the Hubei Provincial Natural Science Foundation of China(2021CFB364)+1 种基金the National Natural Science Foundation of China(82130064,81825015,U22A20337 and 32000119)the Key Biosafety Science and Technology Program of Hubei Jiangxia Laboratory(JXBS001).
文摘Inclusion bodies(IBs)of respiratory syncytial virus(RSV)are formed by liquid-liquid phase separation(LLPS)and contain internal structures termed“IB-associated granules”(IBAGs),where anti-termination factor M2-1 and viral mRNAs are concentrated.However,the mechanism of IBAG formation and the physiological function of IBAGs are unclear.Here,we found that the internal structures of RSV IBs are actual M2-1-free viral messenger ribonucleoprotein(mRNP)condensates formed by secondary LLPS.Mechanistically,the RSV nucleoprotein(N)and M2-1 interact with and recruit PABP to IBs,promoting PABP to bind viral mRNAs transcribed in IBs by RNArecognition motif and drive secondary phase separation.Furthermore,PABP-eIF4G1 interaction regulates viral mRNP condensate composition,thereby recruiting specific translation initiation factors(eIF4G1,eIF4E,eIF4A,eIF4B and eIF4H)into the secondary condensed phase to activate viral mRNAs for ribosomal recruitment.Our study proposes a novel LLPS-regulated translation mechanism during viral infection and a novel antiviral strategy via targeting on secondary condensed phase.
基金The authors gratefully acknowledge the support from the National Natural Science Foundation of China(Nos.51574020 and 51674023)。
文摘The transport of inclusion particles through the liquid metal/molten slag interface and their dissolution in the slag are two key processes of inclusion removal.Based on the latest version of inclusion transport model that takes into account full Reynolds number range and a dissolution kinetics model,a coupled model was developed to simulate the whole process of inclusion removal,from floating in the liquid steel to crossing the interface and further to entering and dissolving in the molten slag.The interaction between the inclusion motion and dissolution was discussed.Even though the inclusion velocity is a key parameter for dissolution,the simulation results show no obvious dissolution during moving state because the process is too short and most of the inclusions dissolve during its static stay in the slag side above the interface.The rate-controlling step of inclusion removal is the transport through the steel-slag interface for the small-size inclusion and static dissolution above the interface for the large-size inclusion,respectively.
文摘Various purification methods were explored to eliminate the dissolved hydrogen and nonmetallic inclusions from molten aluminum alloys. A novel rotating impeller head with self-oscillation nozzles or an electromagnetic valve in the gas circuit was used to produce pulse gas currents for the rotary impeller degassing method. Water simulation results show that the size of gas bubbles can be decreased by 10%20% as compared with the constant gas current mode. By coating ceramic filters or particles with active flux or enamels, composite filters were used to filter the scrap A356 alloy and pure aluminum. Experimental results demonstrate that better filtration efficiency and operation performance can be obtained. Based on numerical calculations, the separation efficiency of inclusions by high frequency magnetic field can be significantly improved by using a hollow cylinder-like separator or utilizing the effects of secondary flow of the melt in a square separator. A multi-stage and multi-media purification platform based on these methods was designed and applied in on-line processing of molten aluminum alloys. Mechanical properties of the processed scrap A356 alloy are greatly improved by the composite purification.
基金supported by the National Basic Research Program of China(2012CBA01202)the National Natural Science Foundation of China(51174184)the Key Research Program of the Chinese Academy of Sciences(KGZD-EW-201-1)。
文摘This paper reports on the selective transport of Lu(Ⅲ)from La(III)and Sm(III)through a polymer inclusion membrane(PIM)composed of 40 wt%di(2-ethylhexyl)phosphinic acid(P227)and 60 wt%poly(vinylidene fluoride)(PVDF).Basically,the changes in surface morphology,thickness and water contact angle of this PVDF-based PIM containing P227(P227@PVDF PIM)with different polymer concentrations were investigated.By solvent extraction experiments,it is found that Lu(Ⅲ)can be selectively extracted from La(Ⅲ)and Sm(Ⅲ)at pH 1.5 in hydrochloric acid solution.According to this result,P227@PVDF PIM was used to selectively transport Lu(Ⅲ)from hydrochloric acid feed solution containing similar concentration of La(Ⅲ)and Sm(Ⅲ).The recovery factor of Lu(III)is 91% after 36 h,and about 5%of Sm(Ⅲ)was also transported through the PIM.The concentration of La(III)in the feed solution and the stripping solution does not change.Furthermore,to overcome the ubiquitous decline of transport efficiency caused by the loss of carrier or the damage of membrane structure after long-term use of PIMs,a process for regenerating PIMs was first proposed and implemented.By comparison of the regenerated PIM with the normal PIM,there is almost no difference in the SEM image,ATR-FTIR spectrum and Lu(III)transport efficiency.It is expected that P227@PVDF PIMs have the potential to be applied to the grouped separation of rare earth elements(REEs),and this study also can be as an inspiration for the further study on the PIMs regeneration process.