Turbulent flow, the transpor't of inclusions and bubbles, and inclusion removal by fluid flow, transport and by bubble flotation in the strand of the continuous slab caster are investigated using computational models...Turbulent flow, the transpor't of inclusions and bubbles, and inclusion removal by fluid flow, transport and by bubble flotation in the strand of the continuous slab caster are investigated using computational models, and validated through comparison with plant measurements of inclusions. Steady 3-D flow of steel in the liquid pool in the mold and upper strand is simulated with a finitedifference computational model using the standard k-εturbulence rondel. Trajectories of inclusions and bubhles tire calculated by integrating each local velocity, considering its drag and buoyancy forces, A "random walk" model is used to incorporate the effect of turbulent fluctuations on the particle motion. The attachment probability of inclusions on a bubble surface is investigated based on fundamental fluid flow simulations, incorporating the turbulent inclusion trajectory and sliding time of each individual inclusion along the bubble surface as a function of particle and bubble size. The chunge in inclusion distribution due to removal by bubble transport in the mold is calculated based on the computed attachment probability of inclusions on each bubble and the computed path length of the bubbles. The results indicate that 6%-10% inclusions are removed by fluid flow transport. 10% by bubble flotation, and 4% by entrapment to the submerged entry nozzle (SEN) walls. Smaller bubbles and larger inclusions have larger attachment probabilities. Smaller bubbles are more efficient for inclusion removal by bubble flotation, so Inng as they are not entrapped in the solidifying shell A larger gas flow rate favors inclusion removal by bubble flotation. The optimum bubble size should be 2-4mm.展开更多
A conventional turbulence inhibitor is compared with a swirling chamber from the points of view of fluid flow and removal rate of inclusion in the tundish. Comparing the RTD curves, inclusion removals, and the streaml...A conventional turbulence inhibitor is compared with a swirling chamber from the points of view of fluid flow and removal rate of inclusion in the tundish. Comparing the RTD curves, inclusion removals, and the streamlines in water model experiments, it can be found that the tundish equipped with a swirling chamber has a great effect on improving the flow field, and the floatation rate of inclusion is higher than the tundish with a turbulence inhibitor. Because of the introduction of the swirling chamber, the flow field and inclusion removal in a two-strand swirling flow tundish are asymmetrical. Rotating the inlet direction of swirling chamber 60 degree is a good strategy to improve the asymmetrical flow field.展开更多
文摘Turbulent flow, the transpor't of inclusions and bubbles, and inclusion removal by fluid flow, transport and by bubble flotation in the strand of the continuous slab caster are investigated using computational models, and validated through comparison with plant measurements of inclusions. Steady 3-D flow of steel in the liquid pool in the mold and upper strand is simulated with a finitedifference computational model using the standard k-εturbulence rondel. Trajectories of inclusions and bubhles tire calculated by integrating each local velocity, considering its drag and buoyancy forces, A "random walk" model is used to incorporate the effect of turbulent fluctuations on the particle motion. The attachment probability of inclusions on a bubble surface is investigated based on fundamental fluid flow simulations, incorporating the turbulent inclusion trajectory and sliding time of each individual inclusion along the bubble surface as a function of particle and bubble size. The chunge in inclusion distribution due to removal by bubble transport in the mold is calculated based on the computed attachment probability of inclusions on each bubble and the computed path length of the bubbles. The results indicate that 6%-10% inclusions are removed by fluid flow transport. 10% by bubble flotation, and 4% by entrapment to the submerged entry nozzle (SEN) walls. Smaller bubbles and larger inclusions have larger attachment probabilities. Smaller bubbles are more efficient for inclusion removal by bubble flotation, so Inng as they are not entrapped in the solidifying shell A larger gas flow rate favors inclusion removal by bubble flotation. The optimum bubble size should be 2-4mm.
文摘A conventional turbulence inhibitor is compared with a swirling chamber from the points of view of fluid flow and removal rate of inclusion in the tundish. Comparing the RTD curves, inclusion removals, and the streamlines in water model experiments, it can be found that the tundish equipped with a swirling chamber has a great effect on improving the flow field, and the floatation rate of inclusion is higher than the tundish with a turbulence inhibitor. Because of the introduction of the swirling chamber, the flow field and inclusion removal in a two-strand swirling flow tundish are asymmetrical. Rotating the inlet direction of swirling chamber 60 degree is a good strategy to improve the asymmetrical flow field.