Let K be an algebraically closed field and A be a finite dimensional algebra over K. In this paper we give a classification of biserial incidence algebras with quiver methods.
This is a pedagogical introduction to the theory of buildings of Jacques Tits and to some applications of this theory.This paper has 4 parts.In the first part we discuss incidence geometry,Coxeter systems and give two...This is a pedagogical introduction to the theory of buildings of Jacques Tits and to some applications of this theory.This paper has 4 parts.In the first part we discuss incidence geometry,Coxeter systems and give two definitions of buildings.We study in the second part the spherical and affine buildings of Chevalley groups.In the third part we deal with Bruhat-Tits theory of reductive groups over local fields.Finally we discuss the construction of the p-adic flag manifolds.展开更多
基金Foundation item: Supported by the National Natural Science Foundation of China(11271119) Supported by the Natural Science Foundation of Beijing(1122002)
文摘Let K be an algebraically closed field and A be a finite dimensional algebra over K. In this paper we give a classification of biserial incidence algebras with quiver methods.
文摘This is a pedagogical introduction to the theory of buildings of Jacques Tits and to some applications of this theory.This paper has 4 parts.In the first part we discuss incidence geometry,Coxeter systems and give two definitions of buildings.We study in the second part the spherical and affine buildings of Chevalley groups.In the third part we deal with Bruhat-Tits theory of reductive groups over local fields.Finally we discuss the construction of the p-adic flag manifolds.