A series of alcohol soluble amino-functionalized carbazole-based copolymers were synthesized via Suzuki coupling reaction. The pendent amino groups endow them high solubility in polar solvents, as well as efficient el...A series of alcohol soluble amino-functionalized carbazole-based copolymers were synthesized via Suzuki coupling reaction. The pendent amino groups endow them high solubility in polar solvents, as well as efficient electron injection capability from high work-function metals. The relationships between the photophysical and electrochemical properties and the polymer backbone structure were systematically investigated. These alcohol-soluble carbazole-based copolymers were used as cathode interlayers between the high work-function metal A1 cathode and P-PPV emissive layer in polymer light-emitting diodes with device structure of ITO/PEDOT:PSS/P-PPV/interlayer/A1. The resulting devices exhibited improved performance due to the better electron injection/transporting ability of the designed copolymers from A1 cathode to the light-emitting layer.展开更多
基金financially supported by the National Basic Research Program of China (2009CB623601,2009CB930604,2011AA03A110)the National Natural Science Foundation of China (21125419,50990065,51073057,91233116)+1 种基金the Guangdong Natural Science Foundation (S2012030006230)the Research Fund for the Doctoral Program of Higher Education of China (20120172140001)
文摘A series of alcohol soluble amino-functionalized carbazole-based copolymers were synthesized via Suzuki coupling reaction. The pendent amino groups endow them high solubility in polar solvents, as well as efficient electron injection capability from high work-function metals. The relationships between the photophysical and electrochemical properties and the polymer backbone structure were systematically investigated. These alcohol-soluble carbazole-based copolymers were used as cathode interlayers between the high work-function metal A1 cathode and P-PPV emissive layer in polymer light-emitting diodes with device structure of ITO/PEDOT:PSS/P-PPV/interlayer/A1. The resulting devices exhibited improved performance due to the better electron injection/transporting ability of the designed copolymers from A1 cathode to the light-emitting layer.