Genotyping platforms,as critical supports for genomics,genetics,and molecular breeding,have been well implemented at national institutions/universities in developed countries and multinational seed companies that poss...Genotyping platforms,as critical supports for genomics,genetics,and molecular breeding,have been well implemented at national institutions/universities in developed countries and multinational seed companies that possess high-throughput,automatic,large-scale,and shared facilities.In this study,we integrated an improved genotyping by target sequencing(GBTS)system with capture-in-solution(liquid chip)technology to develop a multiple single-nucleotide polymorphism(mSNP)approach in which mSNPs can be captured from a single amplicon.From one 40K maize mSNP panel,we developed three types of markers(40K mSNPs,251K SNPs,and 690K haplotypes),and generated multiple panels with various marker densities(1K–40K mSNPs)by sequencing at different depths.Comparative genetic diversity analysis was performed with genic versus intergenic markers and di-allelic SNPs versus non-typical SNPs.Compared with the one-amplicon-one-SNP system,mSNPs and within-mSNP haplotypes are more powerful for genetic diversity detection,linkage disequilibrium decay analysis,and genome-wide association studies.The technologies,protocols,and application scenarios developed for maize in this study will serve as a model for the development of mSNP arrays and highly efficient GBTS systems in animals,plants,and microorganisms.展开更多
Gallium antimonide(GaSb)-based nanostructures have been reported via various vapor-phase synthetic routes while there is not a report on the growth of GaSb nanostructures via a complete one-step solution-phase synthet...Gallium antimonide(GaSb)-based nanostructures have been reported via various vapor-phase synthetic routes while there is not a report on the growth of GaSb nanostructures via a complete one-step solution-phase synthetic strategy.Herein we report the design and synthesis of tadpole-like Ga/GaSb nanostructures by a one-step solution-phase synthetic route typically from the precursors of commercial triphenyl antimony(Sb(Ph)_(3))and trimethylaminogallium(Ga(NMe_(2))_(3))at 260°C in 1-octadecene.The GaSb nanocrystals are grown based on a solution–liquid–solid(SLS)mechanism with zinc blende phase,and their size and shape can be controlled in the procedures via manipulating the reaction conditions.Meanwhile,the tadpole-like Ga/GaSb nanostructures can be applied for the fabrication of a GaSb/Si nanostructured heterojunction-like photodetector over silicon wafer,which demonstrates excellent photoresponse and detection performances from wavelength of 405 to 1,064 nm with high photoresponding rate.Typically,the photodetector exhibits a high responsivity of 18.9 A·W^(−1),a superior detectivity of 1.1×10^(13)Jones,and an ultrafast response speed of 44 ns.The present work provides a new strategy to group III–V antimonide-based semiconducting nanostructures that are capable for the fabrication of photodetector with broadband,high-detectivity,and high-speed photodetecting performances.展开更多
基金This research is supported by the National Key Research and Development Program of China(2016YFD0101803 and 2017YFD0101201)the Central Public-interest Scientific Institution Basal Research Fund(Y2020PT20)+4 种基金the Agricultural Science and Technology Innovation Program(ASTIP)of the Chinese Academy of Agricultural Sciences(CAAS)(CAAS-XTCX2016009)the Key Research Area and Development Program of Guangdong Province(2018B020202008)the Shijiazhuang Science and Technology Incubation Program(191540089A)the Hebei Innovation Capability Enhancement Project(19962911D)Research activities at CIMMYT were supported by the Bill and Melinda Gates Foundation and the CGIAR Research Program MAIZE.
文摘Genotyping platforms,as critical supports for genomics,genetics,and molecular breeding,have been well implemented at national institutions/universities in developed countries and multinational seed companies that possess high-throughput,automatic,large-scale,and shared facilities.In this study,we integrated an improved genotyping by target sequencing(GBTS)system with capture-in-solution(liquid chip)technology to develop a multiple single-nucleotide polymorphism(mSNP)approach in which mSNPs can be captured from a single amplicon.From one 40K maize mSNP panel,we developed three types of markers(40K mSNPs,251K SNPs,and 690K haplotypes),and generated multiple panels with various marker densities(1K–40K mSNPs)by sequencing at different depths.Comparative genetic diversity analysis was performed with genic versus intergenic markers and di-allelic SNPs versus non-typical SNPs.Compared with the one-amplicon-one-SNP system,mSNPs and within-mSNP haplotypes are more powerful for genetic diversity detection,linkage disequilibrium decay analysis,and genome-wide association studies.The technologies,protocols,and application scenarios developed for maize in this study will serve as a model for the development of mSNP arrays and highly efficient GBTS systems in animals,plants,and microorganisms.
基金supported by the National Natural Science Foundation of China(Nos.U1932150 and 21571166)Anhui Provincial Natural Science Foundation(No.1908085QB72).
文摘Gallium antimonide(GaSb)-based nanostructures have been reported via various vapor-phase synthetic routes while there is not a report on the growth of GaSb nanostructures via a complete one-step solution-phase synthetic strategy.Herein we report the design and synthesis of tadpole-like Ga/GaSb nanostructures by a one-step solution-phase synthetic route typically from the precursors of commercial triphenyl antimony(Sb(Ph)_(3))and trimethylaminogallium(Ga(NMe_(2))_(3))at 260°C in 1-octadecene.The GaSb nanocrystals are grown based on a solution–liquid–solid(SLS)mechanism with zinc blende phase,and their size and shape can be controlled in the procedures via manipulating the reaction conditions.Meanwhile,the tadpole-like Ga/GaSb nanostructures can be applied for the fabrication of a GaSb/Si nanostructured heterojunction-like photodetector over silicon wafer,which demonstrates excellent photoresponse and detection performances from wavelength of 405 to 1,064 nm with high photoresponding rate.Typically,the photodetector exhibits a high responsivity of 18.9 A·W^(−1),a superior detectivity of 1.1×10^(13)Jones,and an ultrafast response speed of 44 ns.The present work provides a new strategy to group III–V antimonide-based semiconducting nanostructures that are capable for the fabrication of photodetector with broadband,high-detectivity,and high-speed photodetecting performances.