A Ni-base alloy composite coating reinforced with TiC particles of various shapes and sizes on medium carbon steel substrate was produced by multilayer laser cladding. The chemical compositions, microstructures and su...A Ni-base alloy composite coating reinforced with TiC particles of various shapes and sizes on medium carbon steel substrate was produced by multilayer laser cladding. The chemical compositions, microstructures and surface morphology of the cladded layer were analyzed using energy dispersive X-ray spectroscopy (EDX), scanning electron microscope (SEM), and X-ray diffractometry (XRD). The experimental results showed that an excellent metallurgical bonding between the coating and the substrate was obtained. The microstructure of the coating was mainly composed of γ-Ni dendrites, a small amount of CrB, Ni3B, M23C6 and dispersed TiC particles. Much more and larger TiC particles formed in the overlapping zone, which led to a slightly higher microhardness of this zone. The maximum microhardness of the coating was about HV0.21200. The effects of the laser processing parameters on the microstructures and properties of coating were also investigated.展开更多
Using Ni/Cr/graphite powder blends as raw powders,a Ni matrix composite coating reinforced by in-situ carbide,was fabricated on the surface of Q235 by means of laser cladding. These microstructure and properties were ...Using Ni/Cr/graphite powder blends as raw powders,a Ni matrix composite coating reinforced by in-situ carbide,was fabricated on the surface of Q235 by means of laser cladding. These microstructure and properties were discussed. The result of phase analysis( XRD) and microstructure investigation( SEM) showed that the coatings consist mainly of Cr_3 C_2,Cr_7 C_3 and γ-( Ni,Cr),which are consistent with the thermodynamic calculations. The wear morphology of the coatings was also examined. The results of dry sliding wear tests of different Cr/C ratio show that the wear resistances of the Cr_3 C_2-reinforced coating,respectively,are 13. 4,9. 5,9. 1 and 6. 5 times higher than that of the substrate and the main wear mechanisms of the coatings are adhesion and abrasive wear with slight oxidation.展开更多
基金This research was supported by the Natural Science Foundation of Inner Mongolia (No. 200508010704)the Science Foundation of Inner Mongolia University of Technology (No. ZD200521) the Postdoctoral Science Foundation of China.
文摘A Ni-base alloy composite coating reinforced with TiC particles of various shapes and sizes on medium carbon steel substrate was produced by multilayer laser cladding. The chemical compositions, microstructures and surface morphology of the cladded layer were analyzed using energy dispersive X-ray spectroscopy (EDX), scanning electron microscope (SEM), and X-ray diffractometry (XRD). The experimental results showed that an excellent metallurgical bonding between the coating and the substrate was obtained. The microstructure of the coating was mainly composed of γ-Ni dendrites, a small amount of CrB, Ni3B, M23C6 and dispersed TiC particles. Much more and larger TiC particles formed in the overlapping zone, which led to a slightly higher microhardness of this zone. The maximum microhardness of the coating was about HV0.21200. The effects of the laser processing parameters on the microstructures and properties of coating were also investigated.
基金supported by National High Technology Research and Development Program of China(863 Program)(2015AA034404)Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents(2013RCJJ004)Distinguished Taishan Scholars in Climbing Plan(tspd20161006)
文摘Using Ni/Cr/graphite powder blends as raw powders,a Ni matrix composite coating reinforced by in-situ carbide,was fabricated on the surface of Q235 by means of laser cladding. These microstructure and properties were discussed. The result of phase analysis( XRD) and microstructure investigation( SEM) showed that the coatings consist mainly of Cr_3 C_2,Cr_7 C_3 and γ-( Ni,Cr),which are consistent with the thermodynamic calculations. The wear morphology of the coatings was also examined. The results of dry sliding wear tests of different Cr/C ratio show that the wear resistances of the Cr_3 C_2-reinforced coating,respectively,are 13. 4,9. 5,9. 1 and 6. 5 times higher than that of the substrate and the main wear mechanisms of the coatings are adhesion and abrasive wear with slight oxidation.