Titanium-based composite coatings with and without Y particles were deposited by laser cladding on Ti6Al4V substrates. Solidification microstructure,phase constituents and distribution of the reinforcements with diffe...Titanium-based composite coatings with and without Y particles were deposited by laser cladding on Ti6Al4V substrates. Solidification microstructure,phase constituents and distribution of the reinforcements with different morphologies,were investigated by X-ray diffractometer (XRD),scanning electron microscopy (SEM) and electron probe micro analyzer (EPMA). In addition,the effects of the addition of Y on mechanical properties (in terms of microhardness and the cracking susceptibility) were also highlighted. The results showed that the coatings were composed of α-Ti cellular dendrites,coarse needle-shaped TiB phase and an eutectic in which a large number of needle-shaped TiB whiskers and a few equiaxial TiC particles were uniformly embedded. Y was not stable and was transformed into Y2O3 during laser cladding. The addition of Y could refine the microstructure of the coating by hastening the spheroidization of primary phase structure. Moreover,it could also decrease the activity of carbon and prevent solute atoms from traversing the interface and moving into primary phase structure,namely,increase the fraction volume of TiC in the coating. All of there factors made the cracking susceptibility of the coating containing Y reduced on the premise that microhardness of the coating was increased. Microhardness of the coating without Y ranged from HV 875.6 to HV 659.8,the average microhardness was about HV 747.9. For the coating with Y,microhardness changed from HV 876.5 to HV 741.5 and the average michardness was about HV 795.3. Fracture toughness of the upper,middle,bottom and interface of the coating without Y were 6.33,8.91,11.94 and 11.93 MPa.m1/2. Fracture toughness of the similar positions of the coating with Y were 8.58,12.93,13.81,17.11 MPa.m1/2,respectively. The coating with Y presented higher microhardness and fracture toughness in comparison with that without Y. Obviously,the addition of Y had a very positive effect on the microstructure and mechanical properties of the coatings.展开更多
Titanium-based composite coatings reinforced by in situ synthesized TiB and TiC particles were successfully fabricated on Ti6Al4V by laser cladding using Ti-B_4C-Al or Ti-B_4C-C-Al powders as the precursor materials.T...Titanium-based composite coatings reinforced by in situ synthesized TiB and TiC particles were successfully fabricated on Ti6Al4V by laser cladding using Ti-B_4C-Al or Ti-B_4C-C-Al powders as the precursor materials.The microstructural and metallographic analyses were made by X-ray diffraction(XRD),optical microscope(OM),scanning electron microscopy(SEM),and electron probe microanalysis (EPMA).The results show that the coatings are mainly composed ofα-Ti cellular dendrites and a eutectic transformation product in which a large number of coarse and fine needle-shaped TiB and a few equiaxial TiC particles are homogeneously embedded.A thin dilution zone with a thickness of about 100μm is present at the interface,and it consists of a few TiB and TiC reinforcements and a large number of lamella grains growing parallel to the heat flux direction in which a thin needle-shaped microstructure exists due to the martensitic transformation. The microstructural evolution can be divided into four stages:precipitation and growth of primaryβ-Ti phase,formation of the binary eutecticumβ-Ti+TiB,formation of the ternary eutecticumβ-Ti+TiB+TiC,and solid transformation fromβ-Ti toα-Ti.展开更多
基金Project supported by the National Natural Science Foundation of China (51002093)the Shanghai Science and Technology Development Foun-dation, China (08QA14035)+2 种基金the Special Foundation of the Shanghai Education Commission for Nano-Materials Research, China (0852nm01400)the Crucial Project of the Shanghai Science and Technology Commission, China (08520513400)the Shanghai Leading Academic Discipline Project, China (J51402)
文摘Titanium-based composite coatings with and without Y particles were deposited by laser cladding on Ti6Al4V substrates. Solidification microstructure,phase constituents and distribution of the reinforcements with different morphologies,were investigated by X-ray diffractometer (XRD),scanning electron microscopy (SEM) and electron probe micro analyzer (EPMA). In addition,the effects of the addition of Y on mechanical properties (in terms of microhardness and the cracking susceptibility) were also highlighted. The results showed that the coatings were composed of α-Ti cellular dendrites,coarse needle-shaped TiB phase and an eutectic in which a large number of needle-shaped TiB whiskers and a few equiaxial TiC particles were uniformly embedded. Y was not stable and was transformed into Y2O3 during laser cladding. The addition of Y could refine the microstructure of the coating by hastening the spheroidization of primary phase structure. Moreover,it could also decrease the activity of carbon and prevent solute atoms from traversing the interface and moving into primary phase structure,namely,increase the fraction volume of TiC in the coating. All of there factors made the cracking susceptibility of the coating containing Y reduced on the premise that microhardness of the coating was increased. Microhardness of the coating without Y ranged from HV 875.6 to HV 659.8,the average microhardness was about HV 747.9. For the coating with Y,microhardness changed from HV 876.5 to HV 741.5 and the average michardness was about HV 795.3. Fracture toughness of the upper,middle,bottom and interface of the coating without Y were 6.33,8.91,11.94 and 11.93 MPa.m1/2. Fracture toughness of the similar positions of the coating with Y were 8.58,12.93,13.81,17.11 MPa.m1/2,respectively. The coating with Y presented higher microhardness and fracture toughness in comparison with that without Y. Obviously,the addition of Y had a very positive effect on the microstructure and mechanical properties of the coatings.
基金supported by the Shanghai Science and Technology Development Foundation(No.08QA14035)the Special Foundation of Shanghai Education Commission for Nano-Materials Research(No.0852nm01400)the Crucial Project of Shanghai Science and Technology Commission(No.08520513400)
文摘Titanium-based composite coatings reinforced by in situ synthesized TiB and TiC particles were successfully fabricated on Ti6Al4V by laser cladding using Ti-B_4C-Al or Ti-B_4C-C-Al powders as the precursor materials.The microstructural and metallographic analyses were made by X-ray diffraction(XRD),optical microscope(OM),scanning electron microscopy(SEM),and electron probe microanalysis (EPMA).The results show that the coatings are mainly composed ofα-Ti cellular dendrites and a eutectic transformation product in which a large number of coarse and fine needle-shaped TiB and a few equiaxial TiC particles are homogeneously embedded.A thin dilution zone with a thickness of about 100μm is present at the interface,and it consists of a few TiB and TiC reinforcements and a large number of lamella grains growing parallel to the heat flux direction in which a thin needle-shaped microstructure exists due to the martensitic transformation. The microstructural evolution can be divided into four stages:precipitation and growth of primaryβ-Ti phase,formation of the binary eutecticumβ-Ti+TiB,formation of the ternary eutecticumβ-Ti+TiB+TiC,and solid transformation fromβ-Ti toα-Ti.