Recently,the growing use of unmanned aerial vehicles(UAV)for pesticide application has been reported against a wide range of crops with promising results in East Asian countries such as Japan,South Korea and China.Thi...Recently,the growing use of unmanned aerial vehicles(UAV)for pesticide application has been reported against a wide range of crops with promising results in East Asian countries such as Japan,South Korea and China.This UAV-based application technology for agrochemicals is considered as a high efficiency alternative to the conventional manual spray operations and a low-cost choice as compared to the classical manned aerial application.However,the technology adoption rate and the designed optimal sprayer suitable for drone application for small scale farm remains at the development stage in China and also in Japan.This paper reports the current status of drone pesticide application in China and makes comparisons with its neighbor countries Japan and South Korea in terms of different UAV platforms and their implementation in plant protection for different crops.Challenges and opportunities for future development of UAV-based pesticide application technology are also discussed.展开更多
The mathematical model of a transport aircraft would be subjected to a sudden change when heavy cargo is dropped off in airdropping, which exerts serious influences upon the safety of the aircraft. A variable structur...The mathematical model of a transport aircraft would be subjected to a sudden change when heavy cargo is dropped off in airdropping, which exerts serious influences upon the safety of the aircraft. A variable structure controller is specially designed for handling the airdrop process. The nonlinear system is linearized by input-output feedback linearization using differential geometry theories. On this basis, an inner loop system for velocity and attitude tracking control is designed by using the exponentially approaching rule of the variable structure theory. The whole flight control system is integrated with the outer loop flight altitude control. Digital simulation evidences the applicability of the system to potentially catastrophic course in airdropping heavy cargo and provides robustness against system parameter perturbation.展开更多
As one of the important components of computational flight mechanics and control,numerical algorithms of trajectory optimization for flight vehicles are currently studied by many researchers in aerospace engineering t...As one of the important components of computational flight mechanics and control,numerical algorithms of trajectory optimization for flight vehicles are currently studied by many researchers in aerospace engineering to completely solve these difficult problems,but few papers on the survey of this research field have been published recently.Based on the investigation of more than one hundred literatures,considering the application perspectives of computational flight mechanics and recent developments of trajectory optimization,the numerical algorithms of trajectory optimizations for aerospace vehicles are summarized and systematically analyzed.This paper summarized the basic principle,characteristics and application for all kinds of current trajectory optimization algorithms;and introduced some new methods and theories appearing in recent years.Finally,collaborative trajectory optimization for many flight vehicles,and hypersonic vehicle trajectory optimization were mainly reviewed in this paper.In the conclusion of this paper,the future research properties are presented regarding to numerical algorithms of trajectory optimization and control for flight vehicles as follows:collaboration and antagonization for many flight vehicles and multiple targets,global,real-time online,high accuracy of 7-D trajectory,considering all kinds of unknown random disturbances in trajectory optimization,and so on.展开更多
This article presents a parameterized configuration modeling approach to develop a 6 degrees of freedom (DOF) rigid-body model for air-breathing hypersonic vehicle (AHV). The modeling process involves the paramete...This article presents a parameterized configuration modeling approach to develop a 6 degrees of freedom (DOF) rigid-body model for air-breathing hypersonic vehicle (AHV). The modeling process involves the parameterized configuration design, inviscous hypersonic aerodynamic force calculation and scramjet engine modeling. The parameters are designed for airframe-propulsion integration configuration, the aerodynamic force calculation is based on engineering experimental methods, and the engine model is acquired from gas dynamics and quasi-one dimensional combustor calculations. Multivariate fitting is used to obtain analytical equations for aerodynamic force and thrust. Furthermore, the fitting accuracy is evaluated by relative error (RE). Trim results show that the model can be applied to the investigation of control method for AHV during the cruise phase. The modeling process integrates several disciplines such as configuration design, aerodynamic calculation, scramjet modeling and control method. Therefore the modeling method makes it possible to conduct AHV aerodynamics/propulsion/control integration design.展开更多
A morphing aircraft can adapt its configuration to suit different types of tasks,which is also an important requirement of Unmanned Aerial Vehicles(UAV).The successful development of an unmanned morphing aircraft invo...A morphing aircraft can adapt its configuration to suit different types of tasks,which is also an important requirement of Unmanned Aerial Vehicles(UAV).The successful development of an unmanned morphing aircraft involves three steps that determine its ability and intelligent:configuration design,dynamic modeling and flight control.This study conducts a comprehensive survey of morphing aircraft.First,the methods to design the configuration of a morphing aircraft are presented and analyzed.Then,the nonlinear dynamic characteristics and aerodynamic interference caused by a morphing wing are described.Subsequently,the dynamic modeling and flight control methods for solving the flight control problems are summarized with respect to these features.Finally,the general as well as special challenges ahead of the development of intelligent morphing aircraft are discussed.The findings can provide a theoretical and technical reference for designing future morphing aircraft or morphing-wing UAVs.展开更多
AIM: To study the variabilities of serum proteomic spectra in patients with gastric cancer before and after operation in order to detect the specific protein markers that can be used for quick diagnosis of gastric ca...AIM: To study the variabilities of serum proteomic spectra in patients with gastric cancer before and after operation in order to detect the specific protein markers that can be used for quick diagnosis of gastric cancer. METHODS: Proteomic spectra of 46 serum samples from patients with gastric cancer before and after operation and 40 from normal individuals were generated by IMAC-Cu protein chip and surface-enhanced laser desorption/ionization time of flight mass spectrometry. RESULTS: Fourteen differentially expressed proteins in serum were screened by analysis of proteomic spectra of preoperative patients and normal individuals. We obtained 4 proteins (heat shock protein 27, glucoseregulated protein, prohibitin, protein disulfide isomerase A3) making up marker pattern which was able to class the patient-team and normal-team. These marker patterns yielded 95.7% sensitivity and 92.5% specificity, respectively. The proteins over-expressed in serum of preoperative patients were obviously down-regulated. CONCLUSION: Specific protein markers of gastric cancer can be used for the quick diagnosis of gastric cancer and judgment of prognosis. SELDI-TOF-MS is a useful tool for the detection and identification of new protein markers in serum.展开更多
The nonlinear aircraft model with heavy cargo moving inside is derived by using the sep- aration body method, which can describe the influence of the moving cargo on the aircraft attitude and altitude accurately. Furt...The nonlinear aircraft model with heavy cargo moving inside is derived by using the sep- aration body method, which can describe the influence of the moving cargo on the aircraft attitude and altitude accurately. Furthermore, the nonlinear system is decoupled and linearized through the input^utput feedback linearization method. On this basis, an iterative quasi-sliding mode (SM) flight controller for speed and pitch angle control is proposed. At the first-level SM, a global dynamic switching function is introduced thus eliminating the reaching phase of the sliding motion. At the second-level SM, a nonlinear function with the property of "smaUer errors correspond to bigger gains and bigger errors correspond to saturated gains" is designed to form an integral sliding manifold, and the overcompensation of the integral term to big errors is weakened. Lyapunov- based analysis shows that the controller with strong robustness can reject both constant and time-varying model uncertainties. The performance of the proposed control strategy is verified in a maximum load airdrop mission.展开更多
In western China, the terrain and meteorological conditions are so complex that it is not suitable to construct new radar stations. Automatic dependent surveillance-broadcast (ADS-B) is a totally new surveillance me...In western China, the terrain and meteorological conditions are so complex that it is not suitable to construct new radar stations. Automatic dependent surveillance-broadcast (ADS-B) is a totally new surveillance method, so before practically applied and operated in China, abundant tests and evaluations are necessary to validate the performance of ADS-B and guarantee the operational security. During the flight tests, we collect the data of radar, ADS-B and high accuracy position and compare the performance of ADS-B with radar based on high accuracy position. To solve the asynchronous problem among radar data, ADS-B data and real-time kinematic (RTK) data caused by different update rates, this artic.le proposes the technique of synchronizing multi-surveil- lance data by extrapolating from the data of low update rate to high update rate according to velocity and heading. Meanwhile, because radar data, ADS-B data and RTK data are expressed in different coordinates and cannot be compared each other, this article provides a method to unifying the coordinates of multi-surveillance data. By the analysis and evaluation, we can conclude that the performance of ADS-B is better than radar.展开更多
Aircraft cockpit display interface (CDI) is one of the most important human-machine interfaces for information perceiving. During the process of aircraft design, situation awareness (SA) is frequently considered t...Aircraft cockpit display interface (CDI) is one of the most important human-machine interfaces for information perceiving. During the process of aircraft design, situation awareness (SA) is frequently considered to improve the design, as the CDI must provide enough SA for the pilot to maintain the flight safety. In order to study the SA in the pilot-aircraft system, a cockpit flight simulation environment is built up, which includes a virtual instrument panel, a flight visual display and the corresponding control system. Based on the simulation environment, a human-in-the-loop experiment is designed to measure the SA by the situation awareness global assessment technique (SAGAT). Through the experiment, the SA degrees and heart rate (HR) data of the subjects are obtained, and the SA levels under different CDI designs are analyzed. The results show that analyzing the SA can serve as an objective way to evaluate the design of CDI, which could be proved from the consistent HR data. With this method, evaluations of the CDI design are performed in the experimental flight simulation environment, and optimizations could be guided through the analysis.展开更多
Confuciusornithids, lived from 120–125 million years ago, form a basal bird group and include the oldest birds with horny beaks. Here we describe Eoconfuciusornis zhengi, gen. et sp. nov. from the Early Cretaceous Da...Confuciusornithids, lived from 120–125 million years ago, form a basal bird group and include the oldest birds with horny beaks. Here we describe Eoconfuciusornis zhengi, gen. et sp. nov. from the Early Cretaceous Dabeigou Formatio (131 Ma) in Fengning, Hebei Province, northern China. It represents a new and, more primitive than other known, member of this group and extends the lifespan of this family to 11 Ma, the longest of any known Early Cretaceous avian lineages. Furthermore, Eoconfuciusornis and its relatives present many osteological transformations, such as the size increase of the deltopectoral crest of the humerus and the keel of the sternum, apparently an adaptation toward improved flight in the evolution of the Confuciusornithidae.展开更多
During airdrop of heavy load, the flight parameters vary continuously as the load moves in the hold, and change suddenly when the load drops out. This process deteriorates the flight quality and control characteristic...During airdrop of heavy load, the flight parameters vary continuously as the load moves in the hold, and change suddenly when the load drops out. This process deteriorates the flight quality and control characteristic as the load becomes heavier. Based on the simplified airdrop flight equations, the backstepping and switch control methods are developed to tackle the flight state holding and disturbance/uncertainty (such as large-scale flight condition, pilot manipulation error, system measure delay, etc.) attenuation problem in this paper. Moreover, these methods can be used as a reference for pilot manipulating during airdrop. With the backstepping theory, an adaptive controller is synthesized moves in the hold, and then a coordinated switch control method is for the purpose of stabilizing the transport when the load used to control the aircraft when the condition jumps from the existence of load at the rear of fuselage to no load in the fuselage. Simulation results show that the proposed controllers not only provide effective state holding during airdrop, but also achieve robust performance within wide flight conditions.展开更多
This paper proposes a finite-time robust flight controller, targeting for a reentry vehicle with blended aerodynamic surfaces and a reaction control system(RCS). Firstly, a novel finite-time attitude controller is p...This paper proposes a finite-time robust flight controller, targeting for a reentry vehicle with blended aerodynamic surfaces and a reaction control system(RCS). Firstly, a novel finite-time attitude controller is pointed out with the introduction of a nonsingular finite-time sliding mode manifold. The attitude tracking errors are mathematically proved to converge to zero within finite time which can be estimated. In order to improve the performance, a second-order finite-time sliding mode controller is further developed to effectively alleviate chattering without any deterioration of robustness and accuracy. Moreover, an optimization control allocation algorithm, using linear programming and a pulse-width pulse-frequency(PWPF) modulator, is designed to allocate torque commands for all the aerodynamic surface deflections and on–off switching-states of RCS thrusters.Simulations are provided for the reentry vehicle considering uncertain parameters and external disturbances for practical purposes, and the results demonstrate the effectiveness and robustness of the attitude control system.展开更多
Flight simulator is an important device and a typical high-performance position and speed servo system used in the hardware-in-the-loop simulation of flight control system. Friction is the main nonlinear resistance in...Flight simulator is an important device and a typical high-performance position and speed servo system used in the hardware-in-the-loop simulation of flight control system. Friction is the main nonlinear resistance in the flight simulator servo system, especially in a low-speed state. Based on the description of dynamic and static models of a nonlinear Stribeck friction model, this paper puts forward sliding mode controller to overcome the friction, whose stability is展开更多
There is proposed an adaptive sliding controller in task space on the base of the linear Newton-Euler dynamic equation of motion platform in a six-DOF flight simulator. The uncertain parameters are divided into two gr...There is proposed an adaptive sliding controller in task space on the base of the linear Newton-Euler dynamic equation of motion platform in a six-DOF flight simulator. The uncertain parameters are divided into two groups: the constant and the time-varying. The controller identifies constant uncertain parameters using nonlinear adaptive controller associated with elimination of the influences of time-varying uncertain parameters and compensation of the external disturbance using sliding control. The results of numerical simulation attest to the capability of this control scheme not only to, with deadly accuracy, identify parameters of motion platform such as load, inertia moments and mass center, but also effectively improve the robustness of the system.展开更多
The tilt rotor unmanned aerial vehicle(TRUAV) exhibits special application value due to its unique rotor structure. However, varying dynamics and aerodynamic interference caused by tiltable rotors are great technica...The tilt rotor unmanned aerial vehicle(TRUAV) exhibits special application value due to its unique rotor structure. However, varying dynamics and aerodynamic interference caused by tiltable rotors are great technical challenges and key issues for TRUAV's high-powered flight controls, which have attracted the attention of many researchers. This paper outlines the concept of TRUAV and some typical TRUAV platforms while focusing on control techniques. TRUAV structural features, dynamics modeling, and flight control methods are discussed, and major challenges and corresponding developmental tendencies associated with TRUAV flight control are summarized.展开更多
基金the grants of Special Fund for Agro-scientific Research in the Public Interest from the Ministry of Agriculture,China(201203025,201503130)International Co-operation Project“UAV chemical application technique for rice”from the Chinese Ministry of Agriculture and National Natural Science Foundation of China(31470099)+1 种基金China International Science and Technology Cooperation Project(2010DFA34570)“New Technique for Chemical Application”by Chinese State Administration of Foreign Experts Affairs(SGCAST01601710).
文摘Recently,the growing use of unmanned aerial vehicles(UAV)for pesticide application has been reported against a wide range of crops with promising results in East Asian countries such as Japan,South Korea and China.This UAV-based application technology for agrochemicals is considered as a high efficiency alternative to the conventional manual spray operations and a low-cost choice as compared to the classical manned aerial application.However,the technology adoption rate and the designed optimal sprayer suitable for drone application for small scale farm remains at the development stage in China and also in Japan.This paper reports the current status of drone pesticide application in China and makes comparisons with its neighbor countries Japan and South Korea in terms of different UAV platforms and their implementation in plant protection for different crops.Challenges and opportunities for future development of UAV-based pesticide application technology are also discussed.
文摘The mathematical model of a transport aircraft would be subjected to a sudden change when heavy cargo is dropped off in airdropping, which exerts serious influences upon the safety of the aircraft. A variable structure controller is specially designed for handling the airdrop process. The nonlinear system is linearized by input-output feedback linearization using differential geometry theories. On this basis, an inner loop system for velocity and attitude tracking control is designed by using the exponentially approaching rule of the variable structure theory. The whole flight control system is integrated with the outer loop flight altitude control. Digital simulation evidences the applicability of the system to potentially catastrophic course in airdropping heavy cargo and provides robustness against system parameter perturbation.
基金supported by the Fundatmental Research Funds for the Central Universities of China (Grant No. CXZZ11_0215)
文摘As one of the important components of computational flight mechanics and control,numerical algorithms of trajectory optimization for flight vehicles are currently studied by many researchers in aerospace engineering to completely solve these difficult problems,but few papers on the survey of this research field have been published recently.Based on the investigation of more than one hundred literatures,considering the application perspectives of computational flight mechanics and recent developments of trajectory optimization,the numerical algorithms of trajectory optimizations for aerospace vehicles are summarized and systematically analyzed.This paper summarized the basic principle,characteristics and application for all kinds of current trajectory optimization algorithms;and introduced some new methods and theories appearing in recent years.Finally,collaborative trajectory optimization for many flight vehicles,and hypersonic vehicle trajectory optimization were mainly reviewed in this paper.In the conclusion of this paper,the future research properties are presented regarding to numerical algorithms of trajectory optimization and control for flight vehicles as follows:collaboration and antagonization for many flight vehicles and multiple targets,global,real-time online,high accuracy of 7-D trajectory,considering all kinds of unknown random disturbances in trajectory optimization,and so on.
基金Aeronautical Science Foundation of China (2008ZA51002)
文摘This article presents a parameterized configuration modeling approach to develop a 6 degrees of freedom (DOF) rigid-body model for air-breathing hypersonic vehicle (AHV). The modeling process involves the parameterized configuration design, inviscous hypersonic aerodynamic force calculation and scramjet engine modeling. The parameters are designed for airframe-propulsion integration configuration, the aerodynamic force calculation is based on engineering experimental methods, and the engine model is acquired from gas dynamics and quasi-one dimensional combustor calculations. Multivariate fitting is used to obtain analytical equations for aerodynamic force and thrust. Furthermore, the fitting accuracy is evaluated by relative error (RE). Trim results show that the model can be applied to the investigation of control method for AHV during the cruise phase. The modeling process integrates several disciplines such as configuration design, aerodynamic calculation, scramjet modeling and control method. Therefore the modeling method makes it possible to conduct AHV aerodynamics/propulsion/control integration design.
基金supported by the National Key R&D Program of China(No.2018YFC0810102)the National Natural Science Foundation of China(Nos.91848203 and 91948202)+1 种基金the State Key Laboratory of Robotics(2020-Z02)Natural Science Foundation of Liao Ning Province of China(20180520014)。
文摘A morphing aircraft can adapt its configuration to suit different types of tasks,which is also an important requirement of Unmanned Aerial Vehicles(UAV).The successful development of an unmanned morphing aircraft involves three steps that determine its ability and intelligent:configuration design,dynamic modeling and flight control.This study conducts a comprehensive survey of morphing aircraft.First,the methods to design the configuration of a morphing aircraft are presented and analyzed.Then,the nonlinear dynamic characteristics and aerodynamic interference caused by a morphing wing are described.Subsequently,the dynamic modeling and flight control methods for solving the flight control problems are summarized with respect to these features.Finally,the general as well as special challenges ahead of the development of intelligent morphing aircraft are discussed.The findings can provide a theoretical and technical reference for designing future morphing aircraft or morphing-wing UAVs.
文摘AIM: To study the variabilities of serum proteomic spectra in patients with gastric cancer before and after operation in order to detect the specific protein markers that can be used for quick diagnosis of gastric cancer. METHODS: Proteomic spectra of 46 serum samples from patients with gastric cancer before and after operation and 40 from normal individuals were generated by IMAC-Cu protein chip and surface-enhanced laser desorption/ionization time of flight mass spectrometry. RESULTS: Fourteen differentially expressed proteins in serum were screened by analysis of proteomic spectra of preoperative patients and normal individuals. We obtained 4 proteins (heat shock protein 27, glucoseregulated protein, prohibitin, protein disulfide isomerase A3) making up marker pattern which was able to class the patient-team and normal-team. These marker patterns yielded 95.7% sensitivity and 92.5% specificity, respectively. The proteins over-expressed in serum of preoperative patients were obviously down-regulated. CONCLUSION: Specific protein markers of gastric cancer can be used for the quick diagnosis of gastric cancer and judgment of prognosis. SELDI-TOF-MS is a useful tool for the detection and identification of new protein markers in serum.
基金co-supported by the National Natural Science Foundation of China (No. 60904038)the Aeronautical Science Foundation of China (Nos. 20141396012 and 20121396008)
文摘The nonlinear aircraft model with heavy cargo moving inside is derived by using the sep- aration body method, which can describe the influence of the moving cargo on the aircraft attitude and altitude accurately. Furthermore, the nonlinear system is decoupled and linearized through the input^utput feedback linearization method. On this basis, an iterative quasi-sliding mode (SM) flight controller for speed and pitch angle control is proposed. At the first-level SM, a global dynamic switching function is introduced thus eliminating the reaching phase of the sliding motion. At the second-level SM, a nonlinear function with the property of "smaUer errors correspond to bigger gains and bigger errors correspond to saturated gains" is designed to form an integral sliding manifold, and the overcompensation of the integral term to big errors is weakened. Lyapunov- based analysis shows that the controller with strong robustness can reject both constant and time-varying model uncertainties. The performance of the proposed control strategy is verified in a maximum load airdrop mission.
文摘In western China, the terrain and meteorological conditions are so complex that it is not suitable to construct new radar stations. Automatic dependent surveillance-broadcast (ADS-B) is a totally new surveillance method, so before practically applied and operated in China, abundant tests and evaluations are necessary to validate the performance of ADS-B and guarantee the operational security. During the flight tests, we collect the data of radar, ADS-B and high accuracy position and compare the performance of ADS-B with radar based on high accuracy position. To solve the asynchronous problem among radar data, ADS-B data and real-time kinematic (RTK) data caused by different update rates, this artic.le proposes the technique of synchronizing multi-surveil- lance data by extrapolating from the data of low update rate to high update rate according to velocity and heading. Meanwhile, because radar data, ADS-B data and RTK data are expressed in different coordinates and cannot be compared each other, this article provides a method to unifying the coordinates of multi-surveillance data. By the analysis and evaluation, we can conclude that the performance of ADS-B is better than radar.
基金supported by National Basic Research Program of China(No.2010CB734104)
文摘Aircraft cockpit display interface (CDI) is one of the most important human-machine interfaces for information perceiving. During the process of aircraft design, situation awareness (SA) is frequently considered to improve the design, as the CDI must provide enough SA for the pilot to maintain the flight safety. In order to study the SA in the pilot-aircraft system, a cockpit flight simulation environment is built up, which includes a virtual instrument panel, a flight visual display and the corresponding control system. Based on the simulation environment, a human-in-the-loop experiment is designed to measure the SA by the situation awareness global assessment technique (SAGAT). Through the experiment, the SA degrees and heart rate (HR) data of the subjects are obtained, and the SA levels under different CDI designs are analyzed. The results show that analyzing the SA can serve as an objective way to evaluate the design of CDI, which could be proved from the consistent HR data. With this method, evaluations of the CDI design are performed in the experimental flight simulation environment, and optimizations could be guided through the analysis.
基金National Natural Science Foundation of China (Grant Nos. 40472018, 40121202)the Chinese Academy of Sciences (Grant No. KZCX3-SW- 142)+1 种基金the Major Basic Research Projects of the Ministry of Science and Technology of the People’s Republic of China (Gtant No. 2006CB806400)the Royal Soci-ety and Natural Environment Research Council (Grant No. NE/E011055/1)
文摘Confuciusornithids, lived from 120–125 million years ago, form a basal bird group and include the oldest birds with horny beaks. Here we describe Eoconfuciusornis zhengi, gen. et sp. nov. from the Early Cretaceous Dabeigou Formatio (131 Ma) in Fengning, Hebei Province, northern China. It represents a new and, more primitive than other known, member of this group and extends the lifespan of this family to 11 Ma, the longest of any known Early Cretaceous avian lineages. Furthermore, Eoconfuciusornis and its relatives present many osteological transformations, such as the size increase of the deltopectoral crest of the humerus and the keel of the sternum, apparently an adaptation toward improved flight in the evolution of the Confuciusornithidae.
基金Foundation items: Aeronautical Science Foundation (2007ZD53053) National Natural Science Foundation of China (60134010)
文摘During airdrop of heavy load, the flight parameters vary continuously as the load moves in the hold, and change suddenly when the load drops out. This process deteriorates the flight quality and control characteristic as the load becomes heavier. Based on the simplified airdrop flight equations, the backstepping and switch control methods are developed to tackle the flight state holding and disturbance/uncertainty (such as large-scale flight condition, pilot manipulation error, system measure delay, etc.) attenuation problem in this paper. Moreover, these methods can be used as a reference for pilot manipulating during airdrop. With the backstepping theory, an adaptive controller is synthesized moves in the hold, and then a coordinated switch control method is for the purpose of stabilizing the transport when the load used to control the aircraft when the condition jumps from the existence of load at the rear of fuselage to no load in the fuselage. Simulation results show that the proposed controllers not only provide effective state holding during airdrop, but also achieve robust performance within wide flight conditions.
基金co-supported by the National Basic Research Program of China(No.2012CB720000)the National Natural Science Foundation of China(No.61104153)the Research Fund for the Doctoral Program of Higher Education of China(No.20091101110025)
文摘This paper proposes a finite-time robust flight controller, targeting for a reentry vehicle with blended aerodynamic surfaces and a reaction control system(RCS). Firstly, a novel finite-time attitude controller is pointed out with the introduction of a nonsingular finite-time sliding mode manifold. The attitude tracking errors are mathematically proved to converge to zero within finite time which can be estimated. In order to improve the performance, a second-order finite-time sliding mode controller is further developed to effectively alleviate chattering without any deterioration of robustness and accuracy. Moreover, an optimization control allocation algorithm, using linear programming and a pulse-width pulse-frequency(PWPF) modulator, is designed to allocate torque commands for all the aerodynamic surface deflections and on–off switching-states of RCS thrusters.Simulations are provided for the reentry vehicle considering uncertain parameters and external disturbances for practical purposes, and the results demonstrate the effectiveness and robustness of the attitude control system.
基金This project was supported by the Aeronautics Foundation of China (00E21022).
文摘Flight simulator is an important device and a typical high-performance position and speed servo system used in the hardware-in-the-loop simulation of flight control system. Friction is the main nonlinear resistance in the flight simulator servo system, especially in a low-speed state. Based on the description of dynamic and static models of a nonlinear Stribeck friction model, this paper puts forward sliding mode controller to overcome the friction, whose stability is
文摘There is proposed an adaptive sliding controller in task space on the base of the linear Newton-Euler dynamic equation of motion platform in a six-DOF flight simulator. The uncertain parameters are divided into two groups: the constant and the time-varying. The controller identifies constant uncertain parameters using nonlinear adaptive controller associated with elimination of the influences of time-varying uncertain parameters and compensation of the external disturbance using sliding control. The results of numerical simulation attest to the capability of this control scheme not only to, with deadly accuracy, identify parameters of motion platform such as load, inertia moments and mass center, but also effectively improve the robustness of the system.
基金co-supported by the National Natural Science Foundation of China (Nos. 61503369 and 61433016)
文摘The tilt rotor unmanned aerial vehicle(TRUAV) exhibits special application value due to its unique rotor structure. However, varying dynamics and aerodynamic interference caused by tiltable rotors are great technical challenges and key issues for TRUAV's high-powered flight controls, which have attracted the attention of many researchers. This paper outlines the concept of TRUAV and some typical TRUAV platforms while focusing on control techniques. TRUAV structural features, dynamics modeling, and flight control methods are discussed, and major challenges and corresponding developmental tendencies associated with TRUAV flight control are summarized.