In order to solve the poor performance in text classification when using traditional formula of mutual information (MI) , a feature selection algorithm were proposed based on improved mutual information. The improve...In order to solve the poor performance in text classification when using traditional formula of mutual information (MI) , a feature selection algorithm were proposed based on improved mutual information. The improved mutual information algorithm, which is on the basis of traditional improved mutual information methods that enbance the MI value of negative characteristics and feature' s frequency, supports the concept of concentration degree and dispersion degree. In accordance with the concept of concentration degree and dispersion degree, formulas which embody concentration degree and dispersion degree were constructed and the improved mutual information was implemented based on these. In this paper, the feature selection algorithm was applied based on improved mutual information to a text classifier based on Biomimetic Pattern Recognition and it was compared with several other feature selection methods. The experimental results showed that the improved mutu- al information feature selection method greatly enhances the performance compared with traditional mutual information feature selection methods and the performance is better than that of information gain. Through the introduction of the concept of concentration degree and dispersion degree, the improved mutual information feature selection method greatly improves the performance of text classification system.展开更多
针对支持向量机(SVM)应用于网络入侵检测时特征选择及分类器参数优化问题,利用改进的二进制量子引力搜索算法(IBQGSA)对入侵特征集及SVM参数进行组合寻优。将入侵特征集及SVM参数看作是二进制量子引力搜索算法中的量子个体并进行组合编...针对支持向量机(SVM)应用于网络入侵检测时特征选择及分类器参数优化问题,利用改进的二进制量子引力搜索算法(IBQGSA)对入侵特征集及SVM参数进行组合寻优。将入侵特征集及SVM参数看作是二进制量子引力搜索算法中的量子个体并进行组合编码,在使用量子旋转门更新个体位移时,引入动态的位移更新策略,确保算法收敛到全局极值,设计与进化程度及个体适应度值相关的自适应变异概率,提升量子非门变异操作时算法的自适应变异能力。利用KDD CUP 99数据集进行仿真实验,实验结果表明,所提算法能有效地获取最佳特征子集及分类器参数组合,检测效果更好。展开更多
基金Sponsored by the National Nature Science Foundation Projects (Grant No. 60773070,60736044)
文摘In order to solve the poor performance in text classification when using traditional formula of mutual information (MI) , a feature selection algorithm were proposed based on improved mutual information. The improved mutual information algorithm, which is on the basis of traditional improved mutual information methods that enbance the MI value of negative characteristics and feature' s frequency, supports the concept of concentration degree and dispersion degree. In accordance with the concept of concentration degree and dispersion degree, formulas which embody concentration degree and dispersion degree were constructed and the improved mutual information was implemented based on these. In this paper, the feature selection algorithm was applied based on improved mutual information to a text classifier based on Biomimetic Pattern Recognition and it was compared with several other feature selection methods. The experimental results showed that the improved mutu- al information feature selection method greatly enhances the performance compared with traditional mutual information feature selection methods and the performance is better than that of information gain. Through the introduction of the concept of concentration degree and dispersion degree, the improved mutual information feature selection method greatly improves the performance of text classification system.
文摘针对支持向量机(SVM)应用于网络入侵检测时特征选择及分类器参数优化问题,利用改进的二进制量子引力搜索算法(IBQGSA)对入侵特征集及SVM参数进行组合寻优。将入侵特征集及SVM参数看作是二进制量子引力搜索算法中的量子个体并进行组合编码,在使用量子旋转门更新个体位移时,引入动态的位移更新策略,确保算法收敛到全局极值,设计与进化程度及个体适应度值相关的自适应变异概率,提升量子非门变异操作时算法的自适应变异能力。利用KDD CUP 99数据集进行仿真实验,实验结果表明,所提算法能有效地获取最佳特征子集及分类器参数组合,检测效果更好。