由于虚假数据注入攻击(false data injection attack,FDIA)对电力信息物理系统(grid cyberphysical systems,GCPS)的破坏性较强,且威胁性较大,针对其难以被有效检测难题,提出一种基于加权最小二乘法(weighted least squares,WLS)和改进...由于虚假数据注入攻击(false data injection attack,FDIA)对电力信息物理系统(grid cyberphysical systems,GCPS)的破坏性较强,且威胁性较大,针对其难以被有效检测难题,提出一种基于加权最小二乘法(weighted least squares,WLS)和改进的无迹卡尔曼(unscented Kalman filter,UKF)的电网虚假数据检测方法。对FDIA进行了数学建模,并通过对残差进行分析以说明FDIA的难以检测性,在有攻击向量的情况下,将改进的UKF用于系统的状态估计,同时利用WLS对系统迅速响应的优势,也对系统进行状态估计,采用一致性检验对2种方法的估计结果进行检测,最终判断是否存在FDIA。在IEEE14节点和IEEE57节点上进行实验分析并与支持向量机的检测方法进行检测成功率的对比,仿真结果表明,FDIA可被准确检测,从而验证了本文方法的可行性及有效性。展开更多
Accurate simulation of characteristics performance and state of health(SOH)estimation for lithium-ion batteries are critical for battery management systems(BMS)in electric vehicles.Battery simplified electrochemical m...Accurate simulation of characteristics performance and state of health(SOH)estimation for lithium-ion batteries are critical for battery management systems(BMS)in electric vehicles.Battery simplified electrochemical model(SEM)can achieve accurate estimation of battery terminal voltage with less computing resources.To ensure the applica-bility of life-cycle usage,degradation physics need to be involved in SEM models.This work conducts deep analysis on battery degradation physics and develops an aging-effect coupling model based on an existing improved single particle(ISP)model.Firstly,three mechanisms of solid electrolyte interface(SEI)film growth throughout life cycle are analyzed,and an SEI film growth model of lithium-ion battery is built coupled with the ISP model.Then,a series of identification conditions for individual cells are designed to non-destructively determine model parameters.Finally,battery aging experiment is designed to validate the battery performance simulation method and SOH estimation method.The validation results under different aging rates indicate that this method can accurately es-timate characteristics performance and SOH for lithium-ion batteries during the whole life cycle.展开更多
In this paper,we propose a beam space coversion(BSC)-based approach to achieve a single near-field signal local-ization under uniform circular array(UCA).By employing the centro-symmetric geometry of UCA,we apply BSC ...In this paper,we propose a beam space coversion(BSC)-based approach to achieve a single near-field signal local-ization under uniform circular array(UCA).By employing the centro-symmetric geometry of UCA,we apply BSC to extract the two-dimensional(2-D)angles of near-field signal in the Van-dermonde form,which allows for azimuth and elevation angle estimation by utilizing the improved estimation of signal para-meters via rotational invariance techniques(ESPRIT)algorithm.By substituting the calculated 2-D angles into the direction vec-tor of near-field signal,the range parameter can be conse-quently obtained by the 1-D multiple signal classification(MU-SIC)method.Simulations demonstrate that the proposed al-gorithm can achieve a single near-field signal localization,which can provide satisfactory performance and reduce computational complexity.展开更多
High accuracy seamless positioning is required to support a vast number of applications in varying operational environments.Over the last few years,the global positioning system(GPS)has become the de facto technology ...High accuracy seamless positioning is required to support a vast number of applications in varying operational environments.Over the last few years,the global positioning system(GPS)has become the de facto technology for positioning applications.However,its performance is limited in indoor and dense urban environments due to multipath as well as signal attenuation and blockage.A number of techniques integrating GPS with other positioning technologies have been developed to address the limitations of standalone GPS in these difficult environments.While most of the developed techniques cover the outages of GPS in such environments,they do not provide acceptable performance,in terms of positioning accuracy,especially for some mission-critical(e.g.safety)applications.This paper proposes a tightly coupled(i.e.in the measurement domain)GPS/WiFi integration method which,in addition to addressing GPS outages,improves the overall positioning accuracy to the meter-level,thus satisfying the requirements of a number of location based services and intelligent transport systems applications.The performance of the proposed GPS/WiFi integration method is assessed for a number of scenarios in a simulation environment for an identified dense urban area in London,UK.展开更多
By analyzing the structures of circuits,a novel approach for signal probability estimation of very large-scale integration(VLSI)based on the improved weighted averaging algorithm(IWAA)is proposed.Considering the failu...By analyzing the structures of circuits,a novel approach for signal probability estimation of very large-scale integration(VLSI)based on the improved weighted averaging algorithm(IWAA)is proposed.Considering the failure probability of the gate,first,the first reconvergent fan-ins corresponding to the reconvergent fan-outs were identified to locate the important signal correlation nodes based on the principle of homologous signal convergence.Secondly,the reconvergent fan-in nodes of the multiple reconverging structure in the circuit were identified by the sensitization path to determine the interference sources to the signal probability calculation.Then,the weighted signal probability was calculated by combining the weighted average approach to correct the signal probability.Finally,the reconvergent fan-out was quantified by the mixed-calculation strategy of signal probability to reduce the impact of multiple reconvergent fan-outs on the accuracy.Simulation results on ISCAS85 benchmarks circuits show that the proposed method has approximate linear time-space consumption with the increase in the number of the gate,and its accuracy is 4.2%higher than that of the IWAA.展开更多
首先,设计了节点自适应传感半径调整算法(AASR,adaptive adjustment of sensing radius),通过节点自适应选择最佳的覆盖范围,有效地进行节点覆盖控制,减少节点能量虚耗,提高覆盖效率。其次,从调整效果、能量消耗和覆盖冗余度3个方面对...首先,设计了节点自适应传感半径调整算法(AASR,adaptive adjustment of sensing radius),通过节点自适应选择最佳的覆盖范围,有效地进行节点覆盖控制,减少节点能量虚耗,提高覆盖效率。其次,从调整效果、能量消耗和覆盖冗余度3个方面对节点自适应传感半径调整算法进行了模拟实验和分析。仿真结果表明,AASR能够有效提高节点生存时间,减少能量消耗,提高覆盖率。展开更多
文摘由于虚假数据注入攻击(false data injection attack,FDIA)对电力信息物理系统(grid cyberphysical systems,GCPS)的破坏性较强,且威胁性较大,针对其难以被有效检测难题,提出一种基于加权最小二乘法(weighted least squares,WLS)和改进的无迹卡尔曼(unscented Kalman filter,UKF)的电网虚假数据检测方法。对FDIA进行了数学建模,并通过对残差进行分析以说明FDIA的难以检测性,在有攻击向量的情况下,将改进的UKF用于系统的状态估计,同时利用WLS对系统迅速响应的优势,也对系统进行状态估计,采用一致性检验对2种方法的估计结果进行检测,最终判断是否存在FDIA。在IEEE14节点和IEEE57节点上进行实验分析并与支持向量机的检测方法进行检测成功率的对比,仿真结果表明,FDIA可被准确检测,从而验证了本文方法的可行性及有效性。
基金supported by China Postdoctoral Science Foundation(2021M690740)supported by project of the study on the gradient utilization and industrialization demonstration of lithium-ion power battery(ZH01110405180053PWC).
文摘Accurate simulation of characteristics performance and state of health(SOH)estimation for lithium-ion batteries are critical for battery management systems(BMS)in electric vehicles.Battery simplified electrochemical model(SEM)can achieve accurate estimation of battery terminal voltage with less computing resources.To ensure the applica-bility of life-cycle usage,degradation physics need to be involved in SEM models.This work conducts deep analysis on battery degradation physics and develops an aging-effect coupling model based on an existing improved single particle(ISP)model.Firstly,three mechanisms of solid electrolyte interface(SEI)film growth throughout life cycle are analyzed,and an SEI film growth model of lithium-ion battery is built coupled with the ISP model.Then,a series of identification conditions for individual cells are designed to non-destructively determine model parameters.Finally,battery aging experiment is designed to validate the battery performance simulation method and SOH estimation method.The validation results under different aging rates indicate that this method can accurately es-timate characteristics performance and SOH for lithium-ion batteries during the whole life cycle.
基金supported by the National Natural Science Foundation of China(6192100162022091)the Natural Science Foundation of Hunan Province(2017JJ3368).
文摘In this paper,we propose a beam space coversion(BSC)-based approach to achieve a single near-field signal local-ization under uniform circular array(UCA).By employing the centro-symmetric geometry of UCA,we apply BSC to extract the two-dimensional(2-D)angles of near-field signal in the Van-dermonde form,which allows for azimuth and elevation angle estimation by utilizing the improved estimation of signal para-meters via rotational invariance techniques(ESPRIT)algorithm.By substituting the calculated 2-D angles into the direction vec-tor of near-field signal,the range parameter can be conse-quently obtained by the 1-D multiple signal classification(MU-SIC)method.Simulations demonstrate that the proposed al-gorithm can achieve a single near-field signal localization,which can provide satisfactory performance and reduce computational complexity.
文摘High accuracy seamless positioning is required to support a vast number of applications in varying operational environments.Over the last few years,the global positioning system(GPS)has become the de facto technology for positioning applications.However,its performance is limited in indoor and dense urban environments due to multipath as well as signal attenuation and blockage.A number of techniques integrating GPS with other positioning technologies have been developed to address the limitations of standalone GPS in these difficult environments.While most of the developed techniques cover the outages of GPS in such environments,they do not provide acceptable performance,in terms of positioning accuracy,especially for some mission-critical(e.g.safety)applications.This paper proposes a tightly coupled(i.e.in the measurement domain)GPS/WiFi integration method which,in addition to addressing GPS outages,improves the overall positioning accuracy to the meter-level,thus satisfying the requirements of a number of location based services and intelligent transport systems applications.The performance of the proposed GPS/WiFi integration method is assessed for a number of scenarios in a simulation environment for an identified dense urban area in London,UK.
基金The National Natural Science Foundation of China(No.61502422)the Natural Science Foundation of Zhejiang Province(No.LY18F020028,LQ15F020006)the Natural Science Foundation of Zhejiang University of Technology(No.2014XY007)
文摘By analyzing the structures of circuits,a novel approach for signal probability estimation of very large-scale integration(VLSI)based on the improved weighted averaging algorithm(IWAA)is proposed.Considering the failure probability of the gate,first,the first reconvergent fan-ins corresponding to the reconvergent fan-outs were identified to locate the important signal correlation nodes based on the principle of homologous signal convergence.Secondly,the reconvergent fan-in nodes of the multiple reconverging structure in the circuit were identified by the sensitization path to determine the interference sources to the signal probability calculation.Then,the weighted signal probability was calculated by combining the weighted average approach to correct the signal probability.Finally,the reconvergent fan-out was quantified by the mixed-calculation strategy of signal probability to reduce the impact of multiple reconvergent fan-outs on the accuracy.Simulation results on ISCAS85 benchmarks circuits show that the proposed method has approximate linear time-space consumption with the increase in the number of the gate,and its accuracy is 4.2%higher than that of the IWAA.
文摘首先,设计了节点自适应传感半径调整算法(AASR,adaptive adjustment of sensing radius),通过节点自适应选择最佳的覆盖范围,有效地进行节点覆盖控制,减少节点能量虚耗,提高覆盖效率。其次,从调整效果、能量消耗和覆盖冗余度3个方面对节点自适应传感半径调整算法进行了模拟实验和分析。仿真结果表明,AASR能够有效提高节点生存时间,减少能量消耗,提高覆盖率。