期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进BA-PNN的智能变电站二次设备故障定位方法 被引量:8
1
作者 曹海欧 吴迪 +3 位作者 薛飞 王义波 孙弘毅 杨金龙 《智慧电力》 北大核心 2024年第4期32-39,共8页
针对概率神经网络(PNN)在二次设备故障定位中训练规模较大、容易受到平滑因子干扰的问题,提出了一种基于改进蝙蝠算法优化概率神经网络(BA-PNN)的智能变电站二次设备故障定位方法。首先,在PNN的求和层中采用拉普拉斯分布代替高斯分布,并... 针对概率神经网络(PNN)在二次设备故障定位中训练规模较大、容易受到平滑因子干扰的问题,提出了一种基于改进蝙蝠算法优化概率神经网络(BA-PNN)的智能变电站二次设备故障定位方法。首先,在PNN的求和层中采用拉普拉斯分布代替高斯分布,并用BA算法来获得最优平滑因子,进而提出一种改进蝙蝠算法优化概率神经网络方法;其次,基于智能变电站中二次设备的特征分析,选择故障特征量并对其映射,建立了基于BAPNN的智能变电站二次设备故障定位模型;最后,以某智能变电站故障定位为例,对BA-PNN神经网络进行样本训练,实现对故障元件的精确定位。仿真表明,该方法缩小了神经网络的训练规模,提升了神经网络的计算性能,增强了故障定位的准确性。 展开更多
关键词 改进蝙蝠算法优化概率神经网络 二次系统 智能变电站 故障定位
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部