期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
特征融合的多视角步态识别研究 被引量:10
1
作者 王竣 王修晖 《中国计量大学学报》 2017年第2期234-240,268,共8页
针对单一特征步态识别率低的问题,提出一种将步态能量图(Gait Energy Image,GEI)中动态部分和Gabor小波特征融合的步态识别算法.首先,通过运动目标检测及二值化和形态学处理等预处理操作得到步态轮廓图,再进一步从步态轮廓图计算得到步... 针对单一特征步态识别率低的问题,提出一种将步态能量图(Gait Energy Image,GEI)中动态部分和Gabor小波特征融合的步态识别算法.首先,通过运动目标检测及二值化和形态学处理等预处理操作得到步态轮廓图,再进一步从步态轮廓图计算得到步态能量图,并从中分割出动态部分.然后,利用Gabor小波从步态能量图的动态部分中提取不同角度的信息,将两步态特征融合在一起,对融合后得到的特征向量用改进的KPCA方法进行降维.最后,将降维后的融合特征向量输入到基于多分类的支持向量机(Support Vector Machine,SVM)中,从而完成步态的分类和识别.经过在中国科学院自动化研究所CASIA步态数据库上进行实验,取得了很好的识别效果,实验结果表明,与单一特征的步态识别方法相比,融合后算法的识别率提高了约10%. 展开更多
关键词 GABOR小波 步态能量图 特征融合 改进的kpca 支持向量机
下载PDF
基于小波变换和改进KPCA的奶牛个体识别研究 被引量:10
2
作者 张满囤 单新媛 +3 位作者 于洋 米娜 阎刚 郭迎春 《浙江农业学报》 CSCD 北大核心 2017年第12期2000-2008,共9页
为加快畜牧业现代化程度,克服传统方法中奶牛个体识别正确率低的缺陷,针对奶牛个体纹理特征,对传统KPCA(核主成分分析)方法从降低协方差矩阵维数和引入类别信息两个角度进行改进,并与小波变换进行结合,应用于奶牛个体识别领域。首先对... 为加快畜牧业现代化程度,克服传统方法中奶牛个体识别正确率低的缺陷,针对奶牛个体纹理特征,对传统KPCA(核主成分分析)方法从降低协方差矩阵维数和引入类别信息两个角度进行改进,并与小波变换进行结合,应用于奶牛个体识别领域。首先对归一化后的奶牛图像进行一层小波分解得到4个分量子图,然后对各子图利用改进的KPCA进行特征提取并引入加权策略融合,最后构造出多类SVM分类器进行学习分类。将预先采集的20头奶牛个体的视频数据转化成图片序列并选取20 000张组成实验数据集,通过多组对比实验对小波融合系数、融合向量组数、特征维数三个重要参数进行设定,然后利用不同算法进行奶牛个体识别实验。结果表明,提出方法在识别正确率达到96.31%时,仅用了4.20 s,较其他算法具有明显优势,可以有效地应用到奶牛个体识别领域,兼具高性能、低成本的优势。 展开更多
关键词 小波变换 改进kpca 特征融合 奶牛 个体识别
下载PDF
提升KPCA方法特征抽取效率的算法设计 被引量:3
3
作者 徐勇 杨静宇 陆建峰 《中国工程科学》 2005年第10期38-42,共5页
在PCA基础上发展出的KPCA方法能抽取样本的非线性特征分量。然而,基于KPCA的特征抽取需计算所有训练样本与待抽取特征的样本间的核函数,因此,训练集的大小制约着特征抽取的效率。为了提高效率,假设特征空间中变换轴可由一部分训练样本(... 在PCA基础上发展出的KPCA方法能抽取样本的非线性特征分量。然而,基于KPCA的特征抽取需计算所有训练样本与待抽取特征的样本间的核函数,因此,训练集的大小制约着特征抽取的效率。为了提高效率,假设特征空间中变换轴可由一部分训练样本(节点)线性表出,并设计了改进的KPCA算法(IKPCA)。该算法抽取某样本特征时,只需计算该样本与节点间的核函数即可。实验结果显示,IKPCA在对应较好性能的同时,具有明显的效率上的优势。 展开更多
关键词 kpca Ikpca 特征抽取 特征空间
下载PDF
基于改进的FCM和KPCA的多光谱图像特征提取方法 被引量:5
4
作者 张克军 刘哲 《科学技术与工程》 2007年第8期1657-1661,共5页
分析了PCA和KPCA对于提取多光谱图像非线性特征的不足,提出了一种基于改进的FCM和KPCA的多光谱图像特征提取方法。首先利用改进的FCM进行聚类分析,然后将获得的聚类中心作为输入样本,进行KPCA,从而得到主成分图像。试验结果表明,文中提... 分析了PCA和KPCA对于提取多光谱图像非线性特征的不足,提出了一种基于改进的FCM和KPCA的多光谱图像特征提取方法。首先利用改进的FCM进行聚类分析,然后将获得的聚类中心作为输入样本,进行KPCA,从而得到主成分图像。试验结果表明,文中提出的方法具有良好的特征提取性能,可有效地提取多光谱图像的非线性特征。 展开更多
关键词 多光谱图像 改进的FCM kpca特征提取
下载PDF
基于KPCA优化IHS-RVM的小时间尺度网络流量预测模型
5
作者 杨波 《计算机应用与软件》 2017年第10期185-191,共7页
网络流量时间序列具有高维度、非线性和时变性等特征,针对传统时间序列模型预测精度较低的问题,提出基于KPCA(Kernel Principal Component Analysis)优化IHS-RVM的小时间尺度网络流量预测模型。首先对网络流量时间序列进行相空间重构,... 网络流量时间序列具有高维度、非线性和时变性等特征,针对传统时间序列模型预测精度较低的问题,提出基于KPCA(Kernel Principal Component Analysis)优化IHS-RVM的小时间尺度网络流量预测模型。首先对网络流量时间序列进行相空间重构,确定嵌入维数和延迟时间。然后利用KPCA对网络流量样本进行核主成分特征提取,降低嵌入维数,并获取核主元矩阵。在此基础上,通过改进HS(Harmony Search)算法(IHS)确定RVM核参数。最后利用参数优化的RVM模型进行小时间尺度网络流量预测。为了交叉验证模型的性能,采用实际数据进行性能对比分析。结果表明,本模型性能优于KPCA-IHS-ESN、KPCA-IHS-SVM和IHS-RVM模型,取得了良好的效果。 展开更多
关键词 小时间尺度 网络流量 改进和声搜索算法 kpca RVM
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部