期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于NGO-VMD和改进GoogLeNet的齿轮箱故障诊断方法
被引量:
1
1
作者
李俊卿
刘若尧
何玉灵
《机床与液压》
北大核心
2024年第12期193-201,共9页
目前的齿轮箱故障诊断方法,在多转速工况及噪声干扰下,存在过拟合及诊断效果不佳的问题。针对此问题,提出一种北方苍鹰(NGO)算法优化变分模态分解(VMD)结合改进GoogLeNet的齿轮箱故障诊断方法。使用NGO对VMD进行参数寻优,利用优化后的VM...
目前的齿轮箱故障诊断方法,在多转速工况及噪声干扰下,存在过拟合及诊断效果不佳的问题。针对此问题,提出一种北方苍鹰(NGO)算法优化变分模态分解(VMD)结合改进GoogLeNet的齿轮箱故障诊断方法。使用NGO对VMD进行参数寻优,利用优化后的VMD去除故障信号中的噪声;对原始GoogLeNet的结构进行合理删减,并利用延迟丢弃法、可训练的ReLU函数(TReLU)对其改进;最后,将去噪后的故障信号转换为二维图作为改进GoogLeNet的输入数据进行网络的训练及分类,得到故障诊断结果。实验结果表明:与其他降噪方法相比,NGO-VMD方法的降噪效果明显,能显著提高故障诊断的准确率;与常见的卷积神经网络相比,提出的改进GoogLeNet能进一步提高故障诊断的准确率,达到了97.2%。
展开更多
关键词
变分模态分解(VMD)
北方苍鹰优化(NGO)算法
改进
googlenet
齿轮箱故障诊断
下载PDF
职称材料
基于深度学习的ECG信号分类
被引量:
1
2
作者
于雁
邱磊
《计算机与现代化》
2022年第5期16-20,27,共6页
心电图(ECG)能够实时反映心脏状态,可用于心律失常和其它心血管疾病的准确诊断。针对ECG信号采集时的噪声干扰,重构Db6小波的4级分解量并使用巴特沃斯低通滤波实现双重去噪。将降噪后的ECG信号进行R波提取,并截取P-QRS-T波片段输入到一...
心电图(ECG)能够实时反映心脏状态,可用于心律失常和其它心血管疾病的准确诊断。针对ECG信号采集时的噪声干扰,重构Db6小波的4级分解量并使用巴特沃斯低通滤波实现双重去噪。将降噪后的ECG信号进行R波提取,并截取P-QRS-T波片段输入到一维改进GoogLeNet模型中进行训练。一维改进GoogLeNet是原始二维GoogLeNet的优化结构,可减少网络深度并在稀疏连接中添加最大池化层和扩张卷积加大感受野,降低计算量来提高训练性能。在MIT-BIH数据集中进行实验得到99.39%的分类准确率,比一维GoogLeNet和原始GoogLeNet分别提升了0.17个百分点和0.22个百分点,训练效率均有提升。与其他先进的技术相比,心电信号分类有了显著的改进。
展开更多
关键词
心律失常分类
Db6小波
低通滤波
一维改进
googlenet
扩张卷积
下载PDF
职称材料
题名
基于NGO-VMD和改进GoogLeNet的齿轮箱故障诊断方法
被引量:
1
1
作者
李俊卿
刘若尧
何玉灵
机构
华北电力大学电力工程系
华北电力大学机械工程系
出处
《机床与液压》
北大核心
2024年第12期193-201,共9页
基金
国家自然科学基金面上项目(52177042)。
文摘
目前的齿轮箱故障诊断方法,在多转速工况及噪声干扰下,存在过拟合及诊断效果不佳的问题。针对此问题,提出一种北方苍鹰(NGO)算法优化变分模态分解(VMD)结合改进GoogLeNet的齿轮箱故障诊断方法。使用NGO对VMD进行参数寻优,利用优化后的VMD去除故障信号中的噪声;对原始GoogLeNet的结构进行合理删减,并利用延迟丢弃法、可训练的ReLU函数(TReLU)对其改进;最后,将去噪后的故障信号转换为二维图作为改进GoogLeNet的输入数据进行网络的训练及分类,得到故障诊断结果。实验结果表明:与其他降噪方法相比,NGO-VMD方法的降噪效果明显,能显著提高故障诊断的准确率;与常见的卷积神经网络相比,提出的改进GoogLeNet能进一步提高故障诊断的准确率,达到了97.2%。
关键词
变分模态分解(VMD)
北方苍鹰优化(NGO)算法
改进
googlenet
齿轮箱故障诊断
Keywords
variational
mode
decomposition(VMD)
northern
goshawk
optimization(NGO)algorithm
improved
googlenet
gearbox
fault
diagnosis
fault
diagnosis
分类号
TP277 [自动化与计算机技术—检测技术与自动化装置]
下载PDF
职称材料
题名
基于深度学习的ECG信号分类
被引量:
1
2
作者
于雁
邱磊
机构
青岛大学自动化学院
青岛大学未来研究院
出处
《计算机与现代化》
2022年第5期16-20,27,共6页
基金
国家重点研发计划项目(2020YFB1313604)。
文摘
心电图(ECG)能够实时反映心脏状态,可用于心律失常和其它心血管疾病的准确诊断。针对ECG信号采集时的噪声干扰,重构Db6小波的4级分解量并使用巴特沃斯低通滤波实现双重去噪。将降噪后的ECG信号进行R波提取,并截取P-QRS-T波片段输入到一维改进GoogLeNet模型中进行训练。一维改进GoogLeNet是原始二维GoogLeNet的优化结构,可减少网络深度并在稀疏连接中添加最大池化层和扩张卷积加大感受野,降低计算量来提高训练性能。在MIT-BIH数据集中进行实验得到99.39%的分类准确率,比一维GoogLeNet和原始GoogLeNet分别提升了0.17个百分点和0.22个百分点,训练效率均有提升。与其他先进的技术相比,心电信号分类有了显著的改进。
关键词
心律失常分类
Db6小波
低通滤波
一维改进
googlenet
扩张卷积
Keywords
classification
of
arrhythmias
Db6
wavelet
low
pass
filtering
one-dimensional
improved
googlenet
dilated
convolution
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于NGO-VMD和改进GoogLeNet的齿轮箱故障诊断方法
李俊卿
刘若尧
何玉灵
《机床与液压》
北大核心
2024
1
下载PDF
职称材料
2
基于深度学习的ECG信号分类
于雁
邱磊
《计算机与现代化》
2022
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部