In typical small engines, the cooling air for high pressure turbine (HPT) in a gas turbine engine is commonly bled off from the main flow at the tip of the centrifugal impeller. The pressurized air flow is drawn rad...In typical small engines, the cooling air for high pressure turbine (HPT) in a gas turbine engine is commonly bled off from the main flow at the tip of the centrifugal impeller. The pressurized air flow is drawn radially inwards through the impeller rear cavity. The centripetal air flow creates a strong vortex because of high inlet tangential velocity, which results in significant pressure losses. This not only restricts the mass flow rate, but also reduces the cooling air pressure for down-stream hot com- ponents. The present study is devoted to the numerical modeling of flow in an impeller rear cavity. The simulations are can'ied out with axisymmetric and 3-D sector models for various inlet swirl ratio ,80 (0-0.6), turbulent flow parameter 2-r (0.028-0,280) with and without baffle. The baffle is a thin plate attached to the stationary wall of the cavity, and is proved to be useful in re- ducing the pressure loss of centripetal flow in the impeller rear cavity in the current paper. Further flow details in impeller rear cavity with and without baffle are displayed using CFD techniques. The CFD results show that for any specified geometry, the outlet pressure coefficient of impeller rear cavity with or without baffle depends only on the inlet swirl ratio and turbulent flow parameter. Meanwhile, the outlet pressure coefficient of the cavity with baffle is indeed smaller than that of cavity without baffle, especially for the cases with high inlet swirl ratio. The suppression of the effect of centrifugal pumping and the mixing beween the main air which is downstream of the baffle and the recirculating flow of the vortex in the stationary cavity, which are caused by the use of baffle, are the underlying reasons that lead to the reduction of outlet pressure loss.展开更多
The research purpose of this paper is to explore the influence of the baffle plate on the airflow in the rear cavity of the centrifugal impeller and optimize the performance of the secondary air system’s air bleed se...The research purpose of this paper is to explore the influence of the baffle plate on the airflow in the rear cavity of the centrifugal impeller and optimize the performance of the secondary air system’s air bleed section.In this paper,a comprehensive experimental study was carried out on the flow characteristics in the impeller rear cavity with baffle plate.The windage torque,flow structure and pressure drop between inlet and outlet were measured respectively.The experiment was carried out with the condition that the range of rotational Reynolds number was from 8.33×10^(5)to 22.2×10^(5)and the range of mass flow rate coefficient was from 0.92×10^(4)to 2.92×10^(4).The results show that the static cavity and the narrow stator-rotor cavity formed by the baffle plate effectively suppress the overall swirl coefficient in the cavity.Thus,the static pressure and total pressure drop in the rotor-stator cavity were reduced.The influence of the baffle plate on the windage torque of the rotary disk is related to the turbulence parameters.Under large turbulence parameters,the windage torque would be reduced with baffle plate,while under small turbulence parameters,the baffle plate would increase with baffle plate.In general,the baffle plate can improve the flow capacity and optimize the bleed air performance with proper structure and operation conditions.展开更多
For a radial inflow turbine(RIT),leakage flow in impeller backface cavity has critical impacts on aerodynamic performance of the RIT and axial force acting on the RIT impeller.In order to control this leakage flow,dif...For a radial inflow turbine(RIT),leakage flow in impeller backface cavity has critical impacts on aerodynamic performance of the RIT and axial force acting on the RIT impeller.In order to control this leakage flow,different types of labyrinth seals are numerically studied in this paper based on a supercritical carbon dioxide(S-CO_(2))RIT.The effects of seal clearance and cavity outlet pressure are first analyzed,and the impacts of seal design parameters,including height,number and shape of seal teeth,are evaluated.Results indicate that adding labyrinth seal can improve cavity pressure and hence adequately inhibits leakage flow.Decreasing the seal clearance and increasing the height of seal teeth are beneficial to improve sealing performance,and the same effect can be obtained by increasing the number of seal teeth.Meanwhile,employing seals can reduce leakage loss and improve RIT efficiency under a specific range of cavity outlet pressure.Finally,the influences of seal types on the flow field in seal cavity are numerically analyzed,and results demonstrate that isosceles trapezoidal type of seal cavity has better sealing performance than triangular,rectangular and right-angled trapezoidal seal cavities.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.51306177)
文摘In typical small engines, the cooling air for high pressure turbine (HPT) in a gas turbine engine is commonly bled off from the main flow at the tip of the centrifugal impeller. The pressurized air flow is drawn radially inwards through the impeller rear cavity. The centripetal air flow creates a strong vortex because of high inlet tangential velocity, which results in significant pressure losses. This not only restricts the mass flow rate, but also reduces the cooling air pressure for down-stream hot com- ponents. The present study is devoted to the numerical modeling of flow in an impeller rear cavity. The simulations are can'ied out with axisymmetric and 3-D sector models for various inlet swirl ratio ,80 (0-0.6), turbulent flow parameter 2-r (0.028-0,280) with and without baffle. The baffle is a thin plate attached to the stationary wall of the cavity, and is proved to be useful in re- ducing the pressure loss of centripetal flow in the impeller rear cavity in the current paper. Further flow details in impeller rear cavity with and without baffle are displayed using CFD techniques. The CFD results show that for any specified geometry, the outlet pressure coefficient of impeller rear cavity with or without baffle depends only on the inlet swirl ratio and turbulent flow parameter. Meanwhile, the outlet pressure coefficient of the cavity with baffle is indeed smaller than that of cavity without baffle, especially for the cases with high inlet swirl ratio. The suppression of the effect of centrifugal pumping and the mixing beween the main air which is downstream of the baffle and the recirculating flow of the vortex in the stationary cavity, which are caused by the use of baffle, are the underlying reasons that lead to the reduction of outlet pressure loss.
基金the financial support from the National Science and Technology Major Project(Nos.2017-Ⅲ-0011-0037,2022-Ⅲ-0003-0012)。
文摘The research purpose of this paper is to explore the influence of the baffle plate on the airflow in the rear cavity of the centrifugal impeller and optimize the performance of the secondary air system’s air bleed section.In this paper,a comprehensive experimental study was carried out on the flow characteristics in the impeller rear cavity with baffle plate.The windage torque,flow structure and pressure drop between inlet and outlet were measured respectively.The experiment was carried out with the condition that the range of rotational Reynolds number was from 8.33×10^(5)to 22.2×10^(5)and the range of mass flow rate coefficient was from 0.92×10^(4)to 2.92×10^(4).The results show that the static cavity and the narrow stator-rotor cavity formed by the baffle plate effectively suppress the overall swirl coefficient in the cavity.Thus,the static pressure and total pressure drop in the rotor-stator cavity were reduced.The influence of the baffle plate on the windage torque of the rotary disk is related to the turbulence parameters.Under large turbulence parameters,the windage torque would be reduced with baffle plate,while under small turbulence parameters,the baffle plate would increase with baffle plate.In general,the baffle plate can improve the flow capacity and optimize the bleed air performance with proper structure and operation conditions.
基金founded by the National Key R&D Program of China(Contract No.2016YFB060010)National Natural Science Foundation of China(Grant Nos.51606026 and 51876021)the Fundamental Research Funds for the Central Universities.
文摘For a radial inflow turbine(RIT),leakage flow in impeller backface cavity has critical impacts on aerodynamic performance of the RIT and axial force acting on the RIT impeller.In order to control this leakage flow,different types of labyrinth seals are numerically studied in this paper based on a supercritical carbon dioxide(S-CO_(2))RIT.The effects of seal clearance and cavity outlet pressure are first analyzed,and the impacts of seal design parameters,including height,number and shape of seal teeth,are evaluated.Results indicate that adding labyrinth seal can improve cavity pressure and hence adequately inhibits leakage flow.Decreasing the seal clearance and increasing the height of seal teeth are beneficial to improve sealing performance,and the same effect can be obtained by increasing the number of seal teeth.Meanwhile,employing seals can reduce leakage loss and improve RIT efficiency under a specific range of cavity outlet pressure.Finally,the influences of seal types on the flow field in seal cavity are numerically analyzed,and results demonstrate that isosceles trapezoidal type of seal cavity has better sealing performance than triangular,rectangular and right-angled trapezoidal seal cavities.