The terminal guidance problem for an unpowered lifting reentry vehicle against a sta- tionary target is considered. In addition to attacking the target with high accuracy, the vehicle is also expected to achieve a des...The terminal guidance problem for an unpowered lifting reentry vehicle against a sta- tionary target is considered. In addition to attacking the target with high accuracy, the vehicle is also expected to achieve a desired impact angle. In this paper, a sliding mode control (SMC)-based guidance law is developed to satisfy the terminal angle constraint. Firstly, a specific sliding mode function is designed, and the terminal requirements can be achieved by enforcing both the sliding mode function and its derivative to zero at the end of the flight. Then, a backstepping approach is used to ensure the finite-time reaching phase of the sliding mode and the analytic expression of the control effort can be obtained. The trajectories generated by this method only depend on the initial and terminal conditions of the terminal phase and the instantaneous states of the vehicle. In order to test the performance of the proposed guidance law in practical application, numerical simulations are carried out by taking all the aerodynamic parameters into consideration. The effec- tiveness of the proposed guidance law is verified by the simulation results in various scenarios.展开更多
To intercept maneuvering targets at desired impact angles, a three-dimensional terminal guidance problem is investigated in this study. Because of a short terminal guidance time, a finitetime impact angle control guid...To intercept maneuvering targets at desired impact angles, a three-dimensional terminal guidance problem is investigated in this study. Because of a short terminal guidance time, a finitetime impact angle control guidance law is developed using the fast nonsingular terminal sliding mode control theory. However, the guidance law requires the upper bound of lumped uncertainty including target acceleration, which may not be accurately obtained. Therefore, by adopting a novel reaching law, an adaptive sliding mode guidance law is provided to release the drawback. At the same time, this method can accelerate the convergence rate and weaken the chattering phenomenon to a certain extent. In addition, another novel adaptive guidance law is also derived; this ensures systems asymptotic and finite-time stability without the knowledge of perturbations bounds.Numerical simulations have demonstrated that all the three guidance laws have effective performances and outperform the traditional terminal guidance laws.展开更多
基金co-supported by National Natural Science Foundation of China (No. 61104153)National Basic Research Program of China (No. 2012CB720000)
文摘The terminal guidance problem for an unpowered lifting reentry vehicle against a sta- tionary target is considered. In addition to attacking the target with high accuracy, the vehicle is also expected to achieve a desired impact angle. In this paper, a sliding mode control (SMC)-based guidance law is developed to satisfy the terminal angle constraint. Firstly, a specific sliding mode function is designed, and the terminal requirements can be achieved by enforcing both the sliding mode function and its derivative to zero at the end of the flight. Then, a backstepping approach is used to ensure the finite-time reaching phase of the sliding mode and the analytic expression of the control effort can be obtained. The trajectories generated by this method only depend on the initial and terminal conditions of the terminal phase and the instantaneous states of the vehicle. In order to test the performance of the proposed guidance law in practical application, numerical simulations are carried out by taking all the aerodynamic parameters into consideration. The effec- tiveness of the proposed guidance law is verified by the simulation results in various scenarios.
基金co-supported by the National Natural Science Foundation of China (No. 61333003)the China Aerospace Science and Technology Innovation Foundation (No. JZ20160008)
文摘To intercept maneuvering targets at desired impact angles, a three-dimensional terminal guidance problem is investigated in this study. Because of a short terminal guidance time, a finitetime impact angle control guidance law is developed using the fast nonsingular terminal sliding mode control theory. However, the guidance law requires the upper bound of lumped uncertainty including target acceleration, which may not be accurately obtained. Therefore, by adopting a novel reaching law, an adaptive sliding mode guidance law is provided to release the drawback. At the same time, this method can accelerate the convergence rate and weaken the chattering phenomenon to a certain extent. In addition, another novel adaptive guidance law is also derived; this ensures systems asymptotic and finite-time stability without the knowledge of perturbations bounds.Numerical simulations have demonstrated that all the three guidance laws have effective performances and outperform the traditional terminal guidance laws.