In order to clarify the fatigue damage evolution of concrete exposed to flexural fatigue loads,ultrasonic pulse velocity(UPV),impact-echo technology and surface electrical resistance(SR) method were used.Damage variab...In order to clarify the fatigue damage evolution of concrete exposed to flexural fatigue loads,ultrasonic pulse velocity(UPV),impact-echo technology and surface electrical resistance(SR) method were used.Damage variable based on the change of velocity of ultrasonic pulse(Du) and impact elastic wave(Di)were defined according to the classical damage theory.The influences of stress level,loading frequency and concrete strength on damage variable were measured.The experimental results show that Du and Di both present a three-stages trend for concrete exposed to fatigue loads.Since impact elastic wave is more sensitive to the microstructure damage in stage Ⅲ,the critical damage variable,i e,the damage variable before the final fracture of concrete of Di is slightly higher than that of Du.Meanwhile,the evolution of SR of concrete exposed to fatigue loads were analyzed and the relationship between SR and Du,SR and Di of concrete exposed to fatigue loads were established.It is found that the SR of concrete was decreased with the increasing fatigue cycles,indicating that surface electrical resistance method can also be applied to describe the damage of ballastless track concrete exposed to fatigue loads.展开更多
The dynamic elasticity modulus(Ed)is the most commonly used indexes for nondestructive testing to represent the internal damage of hydraulic concrete.Samples with a specific size is required when the transverse resona...The dynamic elasticity modulus(Ed)is the most commonly used indexes for nondestructive testing to represent the internal damage of hydraulic concrete.Samples with a specific size is required when the transverse resonance method was used to detect the Ed,resulting in a limitation for field tests.The impact-echo method can make up defects of traditional detection methods for frost-resistance testing,such as the evaluation via the loss of mass or strength.The feasibility of the impact-echo method to obtain the relative Ed is explored to detect the frost-resistance property of large-volume hydraulic concretes on site.Results show that the impact-echo method can replace the traditional resonance frequency method to evaluate the frost resistance of concrete,and has advantages of high accuracy,easy to operate,and not affecting by the aggregate size and size effect of samples.The dynamic elastic modulus of concrete detected by the impact-echo method has little difference with that obtained by the traditional resonance method.The one-dimensional elastic wave velocity of concrete has a good linear correlation with the transverse resonance frequency.The freeze-thaw damage occurred from the surface to the inner layer,and the surface is expected to be the most vulnerable part for the freeze-thaw damage.It is expected to monitor and track the degradation of the frost resistance of an actual structure by frequently detecting the P-wave velocity on site,which avoids coring again.展开更多
基金Funded by the National Natural Science Foundation of China(Nos.U1934206,52208299,and 52108260)the 2021 Tencent XPLORER PRIZE。
文摘In order to clarify the fatigue damage evolution of concrete exposed to flexural fatigue loads,ultrasonic pulse velocity(UPV),impact-echo technology and surface electrical resistance(SR) method were used.Damage variable based on the change of velocity of ultrasonic pulse(Du) and impact elastic wave(Di)were defined according to the classical damage theory.The influences of stress level,loading frequency and concrete strength on damage variable were measured.The experimental results show that Du and Di both present a three-stages trend for concrete exposed to fatigue loads.Since impact elastic wave is more sensitive to the microstructure damage in stage Ⅲ,the critical damage variable,i e,the damage variable before the final fracture of concrete of Di is slightly higher than that of Du.Meanwhile,the evolution of SR of concrete exposed to fatigue loads were analyzed and the relationship between SR and Du,SR and Di of concrete exposed to fatigue loads were established.It is found that the SR of concrete was decreased with the increasing fatigue cycles,indicating that surface electrical resistance method can also be applied to describe the damage of ballastless track concrete exposed to fatigue loads.
基金Hainan Provincial Natural Science Foundation of China(522QN279)Research Lab Construction of Hainan University(ZY2019HN0904).
文摘The dynamic elasticity modulus(Ed)is the most commonly used indexes for nondestructive testing to represent the internal damage of hydraulic concrete.Samples with a specific size is required when the transverse resonance method was used to detect the Ed,resulting in a limitation for field tests.The impact-echo method can make up defects of traditional detection methods for frost-resistance testing,such as the evaluation via the loss of mass or strength.The feasibility of the impact-echo method to obtain the relative Ed is explored to detect the frost-resistance property of large-volume hydraulic concretes on site.Results show that the impact-echo method can replace the traditional resonance frequency method to evaluate the frost resistance of concrete,and has advantages of high accuracy,easy to operate,and not affecting by the aggregate size and size effect of samples.The dynamic elastic modulus of concrete detected by the impact-echo method has little difference with that obtained by the traditional resonance method.The one-dimensional elastic wave velocity of concrete has a good linear correlation with the transverse resonance frequency.The freeze-thaw damage occurred from the surface to the inner layer,and the surface is expected to be the most vulnerable part for the freeze-thaw damage.It is expected to monitor and track the degradation of the frost resistance of an actual structure by frequently detecting the P-wave velocity on site,which avoids coring again.