针对现有多模态命名实体识别(Multimodal Named Entity Recognition, MNER)研究中存在的噪声影响和图文语义融合不足问题,本文提出一个多模态语义协同交互的图文联合命名实体识别(Image-Text Joint Named Entity Recognition, ITJNER)...针对现有多模态命名实体识别(Multimodal Named Entity Recognition, MNER)研究中存在的噪声影响和图文语义融合不足问题,本文提出一个多模态语义协同交互的图文联合命名实体识别(Image-Text Joint Named Entity Recognition, ITJNER)模型。ITJNER模型加入图像描述作为额外特征丰富了多模态特征表示,图像描述可以帮助过滤掉从图像特征中引入的噪声并以文本形式总结图像语义信息;还构建了多模态协同交互的多模态语义融合模型,可以加强多模态信息融合,并减少图像信息的语义偏差。在Twitter-2015和Twitter-2017数据集上进行方法实验,分析实验结果并与AdaCAN、UMT、UMGF、Object-AGBAN等方法进行对比。相较于对比方法中的最优方法UMGF,本方法在Twitter-2017数据集上的准确率、召回率、F1值分别提高了0.67%、2.26%、0.93%;在Twitter-2015数据集上,召回率提高了0.19%。实验结果验证了本方法的有效性。展开更多
文摘针对现有多模态命名实体识别(Multimodal Named Entity Recognition, MNER)研究中存在的噪声影响和图文语义融合不足问题,本文提出一个多模态语义协同交互的图文联合命名实体识别(Image-Text Joint Named Entity Recognition, ITJNER)模型。ITJNER模型加入图像描述作为额外特征丰富了多模态特征表示,图像描述可以帮助过滤掉从图像特征中引入的噪声并以文本形式总结图像语义信息;还构建了多模态协同交互的多模态语义融合模型,可以加强多模态信息融合,并减少图像信息的语义偏差。在Twitter-2015和Twitter-2017数据集上进行方法实验,分析实验结果并与AdaCAN、UMT、UMGF、Object-AGBAN等方法进行对比。相较于对比方法中的最优方法UMGF,本方法在Twitter-2017数据集上的准确率、召回率、F1值分别提高了0.67%、2.26%、0.93%;在Twitter-2015数据集上,召回率提高了0.19%。实验结果验证了本方法的有效性。