期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
多尺度特征融合下三维视觉图像场景分割算法
1
作者 闫景富 王鹏飞 《现代电子技术》 北大核心 2024年第21期46-50,共5页
为减少噪声对分割结果的影响,降低单一尺度特征对分割结果的敏感性,提升分割算法的鲁棒性与稳定性,并增强分割边界清晰度,提高分割精度,文中提出一种多尺度特征融合下三维视觉图像场景分割算法。双路径多信息域注意力模块通过结合频域... 为减少噪声对分割结果的影响,降低单一尺度特征对分割结果的敏感性,提升分割算法的鲁棒性与稳定性,并增强分割边界清晰度,提高分割精度,文中提出一种多尺度特征融合下三维视觉图像场景分割算法。双路径多信息域注意力模块通过结合频域通道与空间注意力机制,提取三维视觉图像的多尺度特征,降低单一尺度特征对分割结果的敏感性;在多尺度特征融合模块内添加空洞卷积层,增大多尺度特征的感受野,并融合增大感受野的多尺度特征,捕捉图像的细节信息和全局信息,减少噪声对分割结果的影响,提升分割算法的鲁棒性与稳定性;利用Softmax分类器处理融合特征,得到三维视觉图像场景分割结果;通过全连接条件随机场、后处理分割结果,优化分割边界清晰度,提高分割精度。实验结果证明:该算法可有效提取三维视觉图像的多尺度特征,有效完成三维视觉图像场景分割,且场景分割的边界非常清晰。为三维视觉图像的处理与分析提供了新的思路和方法。 展开更多
关键词 多尺度 特征融合 三维视觉 图像场景分割 注意力机制 空洞卷积 Softmax分类器 条件随机场
下载PDF
基于CNN的零样本城市遥感影像场景分割算法
2
作者 陈静 王晓轩 +1 位作者 吴宇静 王蓉蓉 《吉林大学学报(信息科学版)》 CAS 2023年第4期739-745,共7页
针对观测数据的零样本遥感影像场景分割时,因不存在相应的参照物,造成分割耗时长,精确率较低等问题,提出了基于卷积神经网络的零样本城市遥感影像场景分割算法。采用主成分分析方法与K-奇异值分解方法对遥感影像去噪处理,抑制斑块效应;... 针对观测数据的零样本遥感影像场景分割时,因不存在相应的参照物,造成分割耗时长,精确率较低等问题,提出了基于卷积神经网络的零样本城市遥感影像场景分割算法。采用主成分分析方法与K-奇异值分解方法对遥感影像去噪处理,抑制斑块效应;将去噪后影像输入Retinex增强算法中,进一步提升零样本城市遥感影像增强效果;采用均值漂移算法分割遥感影像场景获取其像素点之间关系,通过卷积神经网络完成零样本城市遥感影像场景精准分割。实验结果表明,该算法精确率高,召回率高,F-score率高,消耗时间短。 展开更多
关键词 主成分分析方法 Retinex增强算法 遥感影像场景 均值漂移分割计算 K-奇异值分解方法 卷积神经网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部