期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
联合图像层级特征的压缩感知迭代重构
1
作者 刘玉红 杨恒 《光学精密工程》 EI CAS CSCD 北大核心 2024年第14期2311-2324,共14页
基于卷积神经网络(Convolutional Neural Networks,CNN)的图像压缩感知重构算法难以捕捉高分辨率图像的长距离依赖关系,采用Transformer虽能解决该问题,但网络参数量和图像重构时间成倍增长。基于此,本文提出了一种联合图像层级特征的... 基于卷积神经网络(Convolutional Neural Networks,CNN)的图像压缩感知重构算法难以捕捉高分辨率图像的长距离依赖关系,采用Transformer虽能解决该问题,但网络参数量和图像重构时间成倍增长。基于此,本文提出了一种联合图像层级特征的压缩感知迭代重构网络(Combining Image Hierarchical-Feature Network,CHFNet),在提高图像重构质量的同时减少重构时间。CHFNet由采样和重构两个子网络组成,采样子网络通过可学习的采样矩阵为重构过程提供更有效的测量值。在重构子网络中,设计了一种使用梯度下降操作和特征优化操作的迭代策略,同时提出一种轻量级CNN-Transformer混合架构,能够建模并优化高细粒度的图像层级特征,在增强网络感知能力的同时降低计算复杂度。此外,CHFNet通过联合优化学习采样重构,实现了完整的端到端训练。实验结果表明,所提算法在多个公共基准数据集上取得了良好的重构效果。在Urban100数据集上,相较于现有最优算法CSformer,平均PSNR,SSIM分别提升0.63 dB和0.0076;在0.10采样率下,相较CSformer在Set11,BSD68和Urban100数据集上的平均重构时间分别减少了2.7447 s,3.5510 s和4.7750 s。 展开更多
关键词 压缩感知 图像层级特征 TRANSFORMER 卷积神经网络 迭代策略 图像重构
下载PDF
基于二维压缩感知和分层特征的图像检索算法 被引量:14
2
作者 周燕 曾凡智 《电子学报》 EI CAS CSCD 北大核心 2016年第2期453-460,共8页
为了保留图像分析时的像素点位置关系及降维处理,把一维压缩感知理论推广到二维,建立了二维可稀疏信号的压缩测量模型,研究了一种二维信号的自适应梯度下降重构AGDR(Adaptive Gradient Descent Recursion)算法,由此提出了一种图像分层... 为了保留图像分析时的像素点位置关系及降维处理,把一维压缩感知理论推广到二维,建立了二维可稀疏信号的压缩测量模型,研究了一种二维信号的自适应梯度下降重构AGDR(Adaptive Gradient Descent Recursion)算法,由此提出了一种图像分层特征提取与检索方法.首先对图像在RGB颜色空间上进行网格离散划分,通过分层算子对图像进行分层映射,定义一种基于颜色网格空间的扩展灰度共生矩阵,采用二维测量模型获取图像的分层测量特征、纹理特征与分层颜色统计特征,图像分层测量特征综合反映出图像的颜色及像素点位置的关系,扩展灰度共生矩阵反映纹理特征.其次用AGDR算法计算检索图像之间的原始信号差量及其稀疏值.最后结合两类分层特征差量、稀疏值和颜色统计特征,融合计算图像间整体相似度度量指标.仿真实验表明,应用分层二维压缩感知测量与AGDR算法的图像检索方法在检索时间、查全率和查准率等指标上具有优越性能,为图像检索提供了新思路. 展开更多
关键词 二维压缩感知 图像检索 图像分层特征 纹理特征 自适应梯度下降重构
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部