该文通过分析SAR图像的噪声成因以及其斑点噪声模型,结合图像的稀疏表示理论提出一种基于稀疏表示的Shearlet域SAR图像去噪算法。算法从整体上对SAR图像进行去噪:首先对SAR图像进行Shearlet变换,然后利用稀疏表示模型构造出去噪的最优...该文通过分析SAR图像的噪声成因以及其斑点噪声模型,结合图像的稀疏表示理论提出一种基于稀疏表示的Shearlet域SAR图像去噪算法。算法从整体上对SAR图像进行去噪:首先对SAR图像进行Shearlet变换,然后利用稀疏表示模型构造出去噪的最优化模型,在此基础上进行迭代去噪,然后重构SAR图像得到去噪后的图像。实验结果表明:该文所提出的算法不仅可以显著去除相干斑噪声,提高去噪图像的峰值信噪比(Peak Signal toNoise Ratio,PSNR),还明显地改善了图像的视觉效果,更好地保留了图像纹理信息。展开更多
文摘该文通过分析SAR图像的噪声成因以及其斑点噪声模型,结合图像的稀疏表示理论提出一种基于稀疏表示的Shearlet域SAR图像去噪算法。算法从整体上对SAR图像进行去噪:首先对SAR图像进行Shearlet变换,然后利用稀疏表示模型构造出去噪的最优化模型,在此基础上进行迭代去噪,然后重构SAR图像得到去噪后的图像。实验结果表明:该文所提出的算法不仅可以显著去除相干斑噪声,提高去噪图像的峰值信噪比(Peak Signal toNoise Ratio,PSNR),还明显地改善了图像的视觉效果,更好地保留了图像纹理信息。
文摘结合双树复小波的平移不变性、多分辨率性和剪切波变换的灵活可选的多方向性,提出一种新的图像表达方法——复Shearlet变换。针对合成孔径雷达(Synthetic Aperture Radar,SAR)图像的相干噪声特点,建立了复Shearlet系数域的高斯混合模型(Gaussian Mixture Model,GSM),在此基础上应用贝叶斯最小二乘法进行系数估计,最后进行复Shearlet反变换得到去噪以后的SAR图像。仿真结果和分析表明:本文提出的算法相比其他变换域去噪算法,不仅去噪后的图像的峰值信噪比(Peak Signal to Noise Ratio,PSNR)有所提高,而且去噪后的图像更平滑,且与Shearlet域高斯混合模型相比,本文算法速度快了两倍多。