The growth kinetics of ice are modeled using the Water Potential from Adaptive Force Matching for Ice and Liquid (WAIL) potential with molecular dynamics. The all-atom WAIL model provides a good description of the p...The growth kinetics of ice are modeled using the Water Potential from Adaptive Force Matching for Ice and Liquid (WAIL) potential with molecular dynamics. The all-atom WAIL model provides a good description of the properties of both ice and liquid with an equilibrium temperature of 270 K at 1 bar. The growth kinetics captured by this model can thus reflect those of real ice. Our simulation indicates that the growth rate of ice on the basal plane is fastest at approximately 20 K supercooling, consistent with experimental findings, where the growth rate increases monotonically as the supercooling increases to 18 K. The key factors that control the growth kinetics leading to the optimal growth temperature are investigated. The simulation revealed a bilayer-by-bilayer growth mechanism on the basal plane that proceeds in two steps. Whereas water molecules lose translational motion and become ice-like quickly, the establishment of orientational order to form ice is a slow and activated process. Enhanced by the templating effect of sublayers, the rapid reduction in translational motion in the formation of the prefreezing layer might explain the significantly faster growth rate relative to the nucleation rate of water. Whereas remelting of the prefreezing layer is observed at low supercooling and may be responsible for the lower growth rate close to the melting temperature, the slow orientational ordering of the prefreezing layer into the final ice conformation is partly responsible for the reduced growth rate at deeper supercooling.展开更多
为研究电场及染污方式对覆冰复合绝缘子导电离子分布的影响,该文在低温、低气压人工气候室对两种染污方式下的35 k V复合绝缘子开展了带电和不带电雨凇覆冰试验。结合COMSOL软件仿真分析冰凌尖端水滴及覆冰滴水过程对绝缘子覆冰的影响,...为研究电场及染污方式对覆冰复合绝缘子导电离子分布的影响,该文在低温、低气压人工气候室对两种染污方式下的35 k V复合绝缘子开展了带电和不带电雨凇覆冰试验。结合COMSOL软件仿真分析冰凌尖端水滴及覆冰滴水过程对绝缘子覆冰的影响,揭示电场、染污方式和染污程度对覆冰绝缘子离子分布的影响规律。结果表明:电场对绝缘子覆冰形态、冰层及冰凌中离子分布和闪络电压均有显著的影响;在带电覆冰条件下,采用覆冰水电导率法时的冰层及冰凌融冰水电导率均低于不带电时;在不带电覆冰条件下,采用固体涂层法时的融冰水电导率远高于覆冰水电导率;绝缘子带电覆冰时的闪络电压高于不带电时,而闪络过程中的融冰水电导率低于不带电时。在分析绝缘子覆冰闪络时,应考虑晶释效应对其闪络特性的影响。展开更多
本文设计了一套真空搅拌法流态冰制取装置,对冰浆的生成全过程进行了观测,通过实验研究了乙二醇添加剂、溶液体积、搅拌速度等因素对冰浆形成过程过冷状态的影响。结果表明:真空状态下冰浆的制取需经历溶液蒸发、沸腾、过冷及冰晶生成...本文设计了一套真空搅拌法流态冰制取装置,对冰浆的生成全过程进行了观测,通过实验研究了乙二醇添加剂、溶液体积、搅拌速度等因素对冰浆形成过程过冷状态的影响。结果表明:真空状态下冰浆的制取需经历溶液蒸发、沸腾、过冷及冰晶生成这四个阶段;冰晶生成瞬间系统的压力会发生突增,压力的升值即过冷结晶压差可用于表征过冷程度的高低;平均过冷结晶压差随乙二醇添加剂浓度的增大而减小,当乙二醇浓度从3%提高至6%时,过冷结晶压差从58.9 Pa降至49.4 Pa,降低了16.1%;溶液体积的增大会使平均过冷结晶压差减小,40 m L溶液的平均过冷结晶压差较20 m L溶液的平均过冷结晶压差下降了12.9%;搅拌速度对过冷程度几乎无影响。展开更多
基金This work was supported by the National Basic Research Program of China under Grant No. 2015CB856801, the National Natural Science Foundation of China under Grant Nos. 11525520 and 11290162/A040106, and the National Key R&D Program under Grant No. 2016YFA0300901. The computer re- sources for this study were provided by the Arkansas High Per- formance Computational Center through grant MRI-R2 0959124 provided by the NSF of USA.
文摘The growth kinetics of ice are modeled using the Water Potential from Adaptive Force Matching for Ice and Liquid (WAIL) potential with molecular dynamics. The all-atom WAIL model provides a good description of the properties of both ice and liquid with an equilibrium temperature of 270 K at 1 bar. The growth kinetics captured by this model can thus reflect those of real ice. Our simulation indicates that the growth rate of ice on the basal plane is fastest at approximately 20 K supercooling, consistent with experimental findings, where the growth rate increases monotonically as the supercooling increases to 18 K. The key factors that control the growth kinetics leading to the optimal growth temperature are investigated. The simulation revealed a bilayer-by-bilayer growth mechanism on the basal plane that proceeds in two steps. Whereas water molecules lose translational motion and become ice-like quickly, the establishment of orientational order to form ice is a slow and activated process. Enhanced by the templating effect of sublayers, the rapid reduction in translational motion in the formation of the prefreezing layer might explain the significantly faster growth rate relative to the nucleation rate of water. Whereas remelting of the prefreezing layer is observed at low supercooling and may be responsible for the lower growth rate close to the melting temperature, the slow orientational ordering of the prefreezing layer into the final ice conformation is partly responsible for the reduced growth rate at deeper supercooling.
文摘为研究电场及染污方式对覆冰复合绝缘子导电离子分布的影响,该文在低温、低气压人工气候室对两种染污方式下的35 k V复合绝缘子开展了带电和不带电雨凇覆冰试验。结合COMSOL软件仿真分析冰凌尖端水滴及覆冰滴水过程对绝缘子覆冰的影响,揭示电场、染污方式和染污程度对覆冰绝缘子离子分布的影响规律。结果表明:电场对绝缘子覆冰形态、冰层及冰凌中离子分布和闪络电压均有显著的影响;在带电覆冰条件下,采用覆冰水电导率法时的冰层及冰凌融冰水电导率均低于不带电时;在不带电覆冰条件下,采用固体涂层法时的融冰水电导率远高于覆冰水电导率;绝缘子带电覆冰时的闪络电压高于不带电时,而闪络过程中的融冰水电导率低于不带电时。在分析绝缘子覆冰闪络时,应考虑晶释效应对其闪络特性的影响。
文摘本文设计了一套真空搅拌法流态冰制取装置,对冰浆的生成全过程进行了观测,通过实验研究了乙二醇添加剂、溶液体积、搅拌速度等因素对冰浆形成过程过冷状态的影响。结果表明:真空状态下冰浆的制取需经历溶液蒸发、沸腾、过冷及冰晶生成这四个阶段;冰晶生成瞬间系统的压力会发生突增,压力的升值即过冷结晶压差可用于表征过冷程度的高低;平均过冷结晶压差随乙二醇添加剂浓度的增大而减小,当乙二醇浓度从3%提高至6%时,过冷结晶压差从58.9 Pa降至49.4 Pa,降低了16.1%;溶液体积的增大会使平均过冷结晶压差减小,40 m L溶液的平均过冷结晶压差较20 m L溶液的平均过冷结晶压差下降了12.9%;搅拌速度对过冷程度几乎无影响。