The ice core dust particulate sampled from Mt. Xixabangma has been analyzed by means of X-ray photoelectron spectrometer (XPS) and scanning electron microscope with energy dispersion X-ray analysis (SEM/EDAX). The...The ice core dust particulate sampled from Mt. Xixabangma has been analyzed by means of X-ray photoelectron spectrometer (XPS) and scanning electron microscope with energy dispersion X-ray analysis (SEM/EDAX). The results show that the contents of SO<sub>4</sub><sup>2-</sup> and SO<sub>3</sub><sup>2-</sup> in the surface layer of the dust are significantly higher than those in the subsurface layer (with the exception of organic sulfide). This difference indicates that the surface SO<sub>x</sub> has been captured and then chemically converted by the atmospheric dust particulate before its deposition with snow, which is obviously different from those inner layer sulfates and sulfites contained by dust itself. In addition, it has been determined by SEM/EDAX that the dust contains relatively high concentrations of transition metal elements such as Fe and Ti oxides which could function as photocatalysts to the conversion of SO<sub>x</sub> adhered on the surface of the dust, and consequently accelerate the deposition of SO<sub>x</sub> to snow. Our research also展开更多
Calibrations between sodium (Na^+) concentrations from a Mt. Logan ice core and sea level pressure (SLP) series show that Na^+ concentrations are closely correlated with the autumn-time (September-October-Novem...Calibrations between sodium (Na^+) concentrations from a Mt. Logan ice core and sea level pressure (SLP) series show that Na^+ concentrations are closely correlated with the autumn-time (September-October-November) Aleutian low (AleuLow). A deepening of the AleuLow strengthens the transport of sea-salt aerosols from the North Pacific to the Mt. Logan region. The Mt. Logan Na^+ record is used to develop a 292 a (1688-1979) reconstruction of the AleuLow revealing a dramatic intensification of atmospheric circulation over the North Pacific region since the 20th century. Mean SLP of the AleuLow was about 1 hPa lower during the 20th century than during prior periods. The strongest deepening of the AleuLow appeared in the 1950s. Significant correlations are also found between the Mt. Logan AleuLow proxy series and the Pacific decadal oscillation (PDO) and Pacific circulation (PC) index during the 20th century. Evolutionary spectral analysis of the proxy record shows significant periodicities from 15 to 30 a consistent with PDO fluctuations and the bidecadal oscillation of North Pacific atmosphere-ocean circulation. A period of 11 a in the AleuLow record may be associated with the Schwabe 11-a cycle of sunspot activity. Additional longer ice core records from this region will aid in the efforts to further understand the climatic change over the North Pacific region.展开更多
Atmospheric circulation reconstruction based on glaciochemical records requires knowledge of chemical concentration controls, such as source, transport pathway and strength. To gain insight into these processes, the r...Atmospheric circulation reconstruction based on glaciochemical records requires knowledge of chemical concentration controls, such as source, transport pathway and strength. To gain insight into these processes, the relationships between glaciochemical records from two Northern Hemisphere sites (Mt. Logan in Yukon Territory and 20D in southern Greenland) and instrumental sea level pressure (SLP) series are investigated. Calibrations between Mt. Logan sea-salt sodium (ssNa+) concentration and SLP series show that ssNa+ concentrations are closely correlated with the autumntime (SON) Aleutian Low and the summertime (JJA) North Pacific Subtropical High. Both the deepened Aleutian Low and enhanced North Pacific Sub- tropical High strengthen the transport of sea-salt aerosols from the North Pacific to the Mt. Logan region. Calibrations between 20D ssNa+ concentrations and SLP series indicate that ssNa+ concentrations are closely related to the wintertime (Jan.) Icelandic Low. A deepening of the Icelandic Low strengthens winter storms and frequent cyclogenesis over the North Atlantic and pushes more sea-salt laden air masses to the Greenland ice sheet. Therefore, ice core ssNa+ records from the Mt. Logan region can be considered as a proxy for reconstructing the au- tumntime Aleutian Low and summertime North Pacific Subtropical High, and the ssNa+ records from Greenland ice core (20D) may provide a proxy for reconstructing the wintertime Icelandic Low.展开更多
Repeat measurements of glacier terminus positions show that glaciers in the central Himalayas have been in a continuous retreat situation in the past decades. The average retreat rate is 5.5-8.7 m/a in Mt. Qomolangma(...Repeat measurements of glacier terminus positions show that glaciers in the central Himalayas have been in a continuous retreat situation in the past decades. The average retreat rate is 5.5-8.7 m/a in Mt. Qomolangma(Everest) since the 1960s and 6.4 m/a in Mt. Xixiabangma since the 1980s. In recent years, the retreat rate is increasing.Ice core studies revealed that the accumulation rate of glaciers has a fluctuating decrease trend in the last century with a rapid decrease in the 1960s and a relatively steady low value afterwards. Meteorological station record indicates that the annual mean temperature has a slow increase trend but summer temperature had a larger increase in the past 30 a. All these suggest that the glacier retreat results from precipitation decrease in combination with temperature increase,and hence glacier shrinkage in this region will speed up if the climatic warming and drying continues.展开更多
Previous studies found extremely high d-excess in both ice core and glacial melt water in Dasuopu glacier, Xixiabangma, middle of Himalayas. These values are much higher than the global average and those measured in s...Previous studies found extremely high d-excess in both ice core and glacial melt water in Dasuopu glacier, Xixiabangma, middle of Himalayas. These values are much higher than the global average and those measured in southwest monsoon precipitation. The d-excess variation in over one year at Nyalam station will clarify this phenomenon. Studies show that the high d-excess is related to the seasonal variation of moisture transport to this region. The d-excess values are low during the southwest monsoon active periods, when moisture originated from the humid ocean surface. The d-excess values are higher in non-monsoon months, when moisture is derived from westerly transport. Winter and spring precipitation accounts for a substantial portion of the annual precipitation, resulting in higher d-excess in the yearly precipitation in the middle of Himalayas than other parts of the southern Tibetan Plateau. This finding reveals that the precipitation in the middle of Himalayas is not purely from southwest monsoon, but a large portion from the westerly transport, which is very important for ice core study in this area.展开更多
An ice core record at Mt. Qomolangma (Everest) since 1954 reveals a sharp decline in net-accumulation in the 1960s, and the annual net-accumulation during the 1970s to the beginning of the 1990s is only half of that a...An ice core record at Mt. Qomolangma (Everest) since 1954 reveals a sharp decline in net-accumulation in the 1960s, and the annual net-accumulation during the 1970s to the beginning of the 1990s is only half of that at the end of the 1950s. The decreased net-accumulation is coincident with glacier retreat, which is associated with recent temperature increase in the region that intensified the ablation. Under the background of global warming, such glacier variation trends will aggravate.展开更多
文摘The ice core dust particulate sampled from Mt. Xixabangma has been analyzed by means of X-ray photoelectron spectrometer (XPS) and scanning electron microscope with energy dispersion X-ray analysis (SEM/EDAX). The results show that the contents of SO<sub>4</sub><sup>2-</sup> and SO<sub>3</sub><sup>2-</sup> in the surface layer of the dust are significantly higher than those in the subsurface layer (with the exception of organic sulfide). This difference indicates that the surface SO<sub>x</sub> has been captured and then chemically converted by the atmospheric dust particulate before its deposition with snow, which is obviously different from those inner layer sulfates and sulfites contained by dust itself. In addition, it has been determined by SEM/EDAX that the dust contains relatively high concentrations of transition metal elements such as Fe and Ti oxides which could function as photocatalysts to the conversion of SO<sub>x</sub> adhered on the surface of the dust, and consequently accelerate the deposition of SO<sub>x</sub> to snow. Our research also
基金This research was supported by the National Natural Science Foundation of China under contract No.40401054the Talent Project and Innovation Project of the Chinese Academy of Sciences under contract Nos KZCX3-SW-339 and KZCX1-10-09the US National Science Foundation under contract No.ATM0139491.
文摘Calibrations between sodium (Na^+) concentrations from a Mt. Logan ice core and sea level pressure (SLP) series show that Na^+ concentrations are closely correlated with the autumn-time (September-October-November) Aleutian low (AleuLow). A deepening of the AleuLow strengthens the transport of sea-salt aerosols from the North Pacific to the Mt. Logan region. The Mt. Logan Na^+ record is used to develop a 292 a (1688-1979) reconstruction of the AleuLow revealing a dramatic intensification of atmospheric circulation over the North Pacific region since the 20th century. Mean SLP of the AleuLow was about 1 hPa lower during the 20th century than during prior periods. The strongest deepening of the AleuLow appeared in the 1950s. Significant correlations are also found between the Mt. Logan AleuLow proxy series and the Pacific decadal oscillation (PDO) and Pacific circulation (PC) index during the 20th century. Evolutionary spectral analysis of the proxy record shows significant periodicities from 15 to 30 a consistent with PDO fluctuations and the bidecadal oscillation of North Pacific atmosphere-ocean circulation. A period of 11 a in the AleuLow record may be associated with the Schwabe 11-a cycle of sunspot activity. Additional longer ice core records from this region will aid in the efforts to further understand the climatic change over the North Pacific region.
基金supported by the Nati onal Natural Science Foundation of China(Distinguis lbed Innovat ion Group,40071 025)Chinese Academy of Sci ences(Grant Nos.Talent Project KZCX1-10-09,KZCX3-SW-33 9)+5 种基金Diector Fund of Key Laboratory of Ice Core and Cold Regions Fnvironment,Cold and Arid Regions Environmental and Engineeni ng Research Institute,CASThe First Chinese National Arctic R es earch ExpeditionUS Nat ional Science Founda tion(ATM-0139481,ESE-9904069)the Electric Power Research Ins titutethe US Environmental Protection Agency,and Environment Canadasupport from the Arctic Institute of North America,University of Calgary,and S.Whitlow,M.Spencer and C.Buck for analyzing samples from both cores.
文摘Atmospheric circulation reconstruction based on glaciochemical records requires knowledge of chemical concentration controls, such as source, transport pathway and strength. To gain insight into these processes, the relationships between glaciochemical records from two Northern Hemisphere sites (Mt. Logan in Yukon Territory and 20D in southern Greenland) and instrumental sea level pressure (SLP) series are investigated. Calibrations between Mt. Logan sea-salt sodium (ssNa+) concentration and SLP series show that ssNa+ concentrations are closely correlated with the autumntime (SON) Aleutian Low and the summertime (JJA) North Pacific Subtropical High. Both the deepened Aleutian Low and enhanced North Pacific Sub- tropical High strengthen the transport of sea-salt aerosols from the North Pacific to the Mt. Logan region. Calibrations between 20D ssNa+ concentrations and SLP series indicate that ssNa+ concentrations are closely related to the wintertime (Jan.) Icelandic Low. A deepening of the Icelandic Low strengthens winter storms and frequent cyclogenesis over the North Atlantic and pushes more sea-salt laden air masses to the Greenland ice sheet. Therefore, ice core ssNa+ records from the Mt. Logan region can be considered as a proxy for reconstructing the au- tumntime Aleutian Low and summertime North Pacific Subtropical High, and the ssNa+ records from Greenland ice core (20D) may provide a proxy for reconstructing the wintertime Icelandic Low.
文摘Repeat measurements of glacier terminus positions show that glaciers in the central Himalayas have been in a continuous retreat situation in the past decades. The average retreat rate is 5.5-8.7 m/a in Mt. Qomolangma(Everest) since the 1960s and 6.4 m/a in Mt. Xixiabangma since the 1980s. In recent years, the retreat rate is increasing.Ice core studies revealed that the accumulation rate of glaciers has a fluctuating decrease trend in the last century with a rapid decrease in the 1960s and a relatively steady low value afterwards. Meteorological station record indicates that the annual mean temperature has a slow increase trend but summer temperature had a larger increase in the past 30 a. All these suggest that the glacier retreat results from precipitation decrease in combination with temperature increase,and hence glacier shrinkage in this region will speed up if the climatic warming and drying continues.
基金This work was supported by the National Natural Science Foundation of China(Grant No.40271025)the Innovation Program of the Chinese Academy of Sciences(Grant No.KZCX3-SW-339)+2 种基金the Collective Innovation of National Natural Science Foundation of China(Grant No.40121101)the Ministry of Science and Technology of the People's Republic of China(Grant No.2001CCB711001)China Scholarship Council.
文摘Previous studies found extremely high d-excess in both ice core and glacial melt water in Dasuopu glacier, Xixiabangma, middle of Himalayas. These values are much higher than the global average and those measured in southwest monsoon precipitation. The d-excess variation in over one year at Nyalam station will clarify this phenomenon. Studies show that the high d-excess is related to the seasonal variation of moisture transport to this region. The d-excess values are low during the southwest monsoon active periods, when moisture originated from the humid ocean surface. The d-excess values are higher in non-monsoon months, when moisture is derived from westerly transport. Winter and spring precipitation accounts for a substantial portion of the annual precipitation, resulting in higher d-excess in the yearly precipitation in the middle of Himalayas than other parts of the southern Tibetan Plateau. This finding reveals that the precipitation in the middle of Himalayas is not purely from southwest monsoon, but a large portion from the westerly transport, which is very important for ice core study in this area.
文摘An ice core record at Mt. Qomolangma (Everest) since 1954 reveals a sharp decline in net-accumulation in the 1960s, and the annual net-accumulation during the 1970s to the beginning of the 1990s is only half of that at the end of the 1950s. The decreased net-accumulation is coincident with glacier retreat, which is associated with recent temperature increase in the region that intensified the ablation. Under the background of global warming, such glacier variation trends will aggravate.